
NASA/CP-2000-209890 SEL-99-002
Software Engineering Laboratory Series

Proceedings of the Twenty-Fourth Annual
Software Engineering Workshop

Compiled by:
Goddard Space Flight Center

Proceedings of a workshop held
at the Goddard Space Flight Center
Greenbelt, Maryland
December 1-2,1999

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 2077 1

March 2000

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the largest collection
of aeronautical and space science STI in the
world. The Program Office is also NASA’s
institutional mechanism for disseminating the
results of its research and development activi-
ties. These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of
peer-reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA
programs, projects, and mission, often con-
cerned with subjects having substantial public
interest.

TECHNICAL TRANSLATION.
English-language translations of foreign scien-
tific and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creat-
ing custom thesauri, building customized data-
bases, organizing and publishing research results . . .
even providing videos.

For more information about the NASA STI Program
Office, see the following:

Access the NASA STI Program Home Page at
http://www . sti.nasa.gov/STI-homepage.htm1

E-mail your question via the Internet to
help@ sti.nasa.gov

Fax your question to the NASA Access Help
Desk at (301) 621-0134

Telephone the NASA Access Help Desk at
(301) 621-0390

Write to:
NASA Access Help Desk
NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076-1320

http://www
http://sti.nasa.gov

The views and findings expressed herein are
those of the authors and presenters and do not
necessarily represent the views, estimates, or
policies of the SEL. All material herein is
reprinted as submitted by authors and present-
ers, who are solely responsible for compliance
with any relevant copyright, patent, or other
proprietary restrictions.

Available from:

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076-1320
Price Code: A17

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22 16 1

Price Code: A10

Proceedings of the Twenty-Fourth Annual
Software Engineering Works hop

December 1-2, 1999

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics and
Space Administration/Goddard Space Flight Center (NASA/GSFC) and created to investigate the effective-
ness of software engineering technologies when applied to the development of applications software. The
SEL was created in 1976 and has three primary organizational members:

NASA/GSFC, Information Systems Center
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Development and Sustaining Engineering Organization

The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2)
to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and
then to apply successful development practices. The activities, findings, and recommendations of the SEL
are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this
document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL homepage at:

http://sel.gsfc.nasa.gov/

or by writing to:

Systems Integration and Engineering Branch
Code 581
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

http://sel.gsfc.nasa.gov

CONTENTS

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Opening

Welcoming
M. Stark, SEL Director

Introductory Remarks
M. Halem, NASNGoddard

Session 1: The International Influence of the Software Engineering
Laboratory - Discussant: V. Basili, Fraunhofer Center - Maryland

Experiences in Using the Goal/Question/Metric Paradigm
R. van Solingen, Eindhoven University of Technology and TokheimNetherlands

Experimentation: Engine for Applied Research and Technology Transfer in Software
Engineering
D. Rombach, Fraunhofer Institute for Experimental Software Engineering

Sojbare Experience Center: The Evolution of the Experience Factory Concept
F. Houdek and K. Schneider, Daimler-Benz/Germany

Session 2: Object Oriented Testing and Reading - Discussant: M. Zelkowitz,
University of Maryland

Risk- based Object-Oriented Testing
L. Rosenberg, SATC/Goddard, R. Stapko and A. Gallo, SATC/Unisys, and M.
Parizer, NASNGoddard

Using Guided Inspection to Validate UML Models
M. Major and J. McGregor, Software Architects

Reading Techniques for 00 Design Inspections
G. Travassos, F. Shull, J. Carver, and V. Basili, University of Maryland

SEW Proceedings SEL-99-002

CONTENTS (cont’d)

Session 3: Software Process Improvement - Discussant: S. Condon, Computer
Sciences Corporation

A Taxonomy of SPI Frameworks
C. Halvorsen and R. Conradi, Norwegian University of Science and Technology

Discipline of Market Leaders and Other Accelerators to Measurement
S. Rifkin, Master Systems

Software Measurement Frameworks to Assess the Value of Independent Verijication &
Validation
N. Eickelman, NASA/IV&V

Session 4: Space Software - Discussant: M. Stark, NASAIGoddard

Software IV& V Research Priorities and Applied Program Accomplishments Within
NASA
L. Blazy, NASNAmesIWV

Developing a Software Technology Roadmap to Enable NASA’s 21st Century Missions
M. Szczur, NASNGoddard

The Impact of Autonomous Systems Technology on JPL Mission Software
R. Doyle, JPL Key Note Address

Session 5: Using the Experience Factory - Discussant: G. Abshire, Computer
Sciences Corporation

Attaining Level 5 in CMM Process Maturity
F. McGarry, W. Decker, J. Haskell, and A. Parra, Computer Sciences Corporation

Lessons Learned from the Failure of an Experience Base Initiative Using a Bottom-up
Development Paradigm
A. Koennecker, University of KairserslauternIFraunhofer Institute for Experimental
Software Engineering, R. Jeffery and G. Low, University of New South Wales

An Experience Management System for a Software Consulting Organization
C. Seaman, M. Mendonqa, V. Basili, University of Maryland, and Y. Kim, Q-Labs

Session 6: Panel Discussion - Moderator: R. Doyle, JPL

Software Past, Present, and Future: Views from Government, Industuy, and Academia

L. Holcomb, NASNCIO
J. Page, Computer Sciences Corporation
M. Evangelist, National Science Foundation

SEW Proceedings SEL-99-002

CONTENTS (cont’d)

Session 7: Inspections - Discussant: M. Morisio, University of Maryland

Quantitative Methods Do Work
E. Weller, Bull HN Information Systems

SEI CMM Level 4 Quantitative Analysis
A. Florence, MITRE

Empirical Study of Inspection and Testing Data at Ericsson, Norway
A. Marjara, Cap Gemini AS, R. Conradi, Norwegian University of Science and
Technology, and B. Skitevik, STC

Session 8: COTS - Discussant: H. Kea, NASNGoddard

JINI: A Technology for 21st Century -Is It Rea& For Prime Time?
S. Demurjian, University of Connecticut and P. Barr, MITRE

A Classijkation of Software Components Incompatibilities for COTS Integration
D. Yakimovich and G. Travassos, University of Maryland, and V. Basili, Fraunhofer
Center - Maryland

Appendix A - Workshop Attendees

Appendix B - Standard Bibliography of SEL Literature

SEW Proceedings SEL-99-002

Session 1: The International Influence of the
Software Engineering Laboratory

Rini van Solingen, Eindhoven University of Technology and T o k h e i d e t h e r l a n d s

Dieter Rombach, Fraunhofer Institute for Experimental Software Engineering

Frank Houdek, Daimler-BendGermany

SEW Proceedings SEL-99-002

Experiences in Using the GoaVQuestion/Metric Paradigm

Rini van Solingen

Tokheim, The Netherlands
Eindhoven University of Technology, The Netherlands

Abstract

Tokheim, a company that provides products and services for the retail petroleum market,
applies the GoaVQuestiodMetric paradigm to support their software development
projects in their central development site in the Netherlands since 1994. Many
experiences have been gathered during these projects. Experiences includes knowledge
on software development topics, but also on practical GQM application in industry.

The presentation will address a selection of experiences, lessons learned and
measurement examples collected during the past years.

GQM experiences published in a book

These experiences have also been published recently in the McGraw-Hill book: ‘The
Goal/QuestiodMetric method: A practical guide for quality improvement of software
development’ by Rini van Solingen and Egon Berghout. ISBN 0-07-709553-7.

This book contains practical procedures for GQM application in industry and consists for
over 50% of practical results and documents from GQM application in four Tokheim
projects.

Foreword by Professor Victor R. Basili to the GQM book

The original ideas for the Goal Question Metric Paradigm came from the need to solve a
practical problem back in the late 1970s. How do you decide what you need to measure in
order to achieve your goals? We (Dr. David Weiss and I) faced the problem when trying
to understand the types of changes (modifications and defects) being made to a set of
flight dynamics projects at NASA Goddard Space Flight Center. Was there a pattern to
the changes? If we understood them could we anticipate them and possibly improve the
development processes to deal with them? At the same time, we were trying to use
change data to evaluate the effects of applying the Software Cost Reduction methodology
on the A-7 project requirements document at the Naval Research Laboratory.

Writing goals allowed us to focus on the important issues. Defining questions allowed us
to make the goals more specific and suggested the metrics that were relevant to the goals.
The resulting GQM lattice allowed us to see the full relationship between goals and
metrics, determine what goals and metrics were missing or inconsistent, and provide a
context for interpreting the data after it was collected. It permitted us to maximize the set
of goals for a particular data set and minimize the data required by recognizing where one
metric could be substituted for another.

The process established the way we did measurement in the Software Engineering
Laboratory at Goddard Space Flight Center, and has evolved over time, based upon use.
Expansion involved the application to other areas of measurement (such as effort,
schedule, process conformance), the development of the goal templates, the development
of support processes, the formalization of the questions into models, and the embedding
of measurement in an evolutionary feedback loop, the Quality Improvement Process and
the Experience Factory Organization. Professor Dieter Rombach was a major contributor
to this expansion.

The GQM paradigm represents a practical approach for bounding the measurement
problem. It provides an organization with a great deal of flexibility, allowing it to focus
its measurement program on its own particular needs and culture. It is based upon two
basic assumptions (1) that a measurement program should not be ‘metrics-based’ but
‘goal-based’ and (2) that the definition of goals and measures need to be tailored to the
individual organization. However, these assumptions make the process more difficult
than just offering people a “collection of metrics” or a standard predefined set of goals
and metrics. It requires that the organization make explicit its own goals and processes.

In this book, Rini van Solingen and Egon Berghout provide the reader with an excellent
and comprehensive synthesis of the GQM concepts, packaged with the support necessary
for building an effective measurement program. It provides more than the GQM, but
describes it in the philosophy of the Quality Improvement Paradigm and the Experience
Factory Organization. Based upon experience, they have organized the approach in a
step-by-step set of procedures, offering experience-based heuristics that I recognize as
effective. They have captured the best ideas and offer them in a straightforward manner.
In reading this book, I found myself constantly nodding in agreement, fiiding many ideas
I had not articulated as well. They offer several examples that can be used as templates
for those who wish to have a standard set of goals and metrics as an initial iteration.

If you work on a measurement program, you should keep this book with you as the
definitive reference for ideas and procedures.

Professor Victor R. Basili
University of Maryland
and
Fraunhofer Center for Experimental Software Engineering, Maryland

About the presenter

Rini van Solingen (M.Sc.) has been working as a senior software quality engineer at
Tokheim and as a research fellow at Eindhoven University of Technology, since 1994.
During this period he worked on all Tokheim GQM projects and performed research on
software process improvement and measurement. He has published over 50 publications
in international journals and conference proceedings. He is a member of the IEEE
Computer society and is an active reviewer for IEEE Software.

0
0
r

0
N
r

rr)

ni

ul

3 a
L

Q) z

* -

s

0

t

rc
0
CI
S

$ 3
0 0
N E a A

0
0
r

I. I

t
I I

s
0 w

s
0 cv

s
0

E X P E R I M E N T A T I O N:

Engine for Applied Research and Technology Transfer
in Software Engineering

Dieter Romb ach

University of Kaiserslautem
Computer Science Department

Software Engineering Chair
Kaiserslautem, Germany

&
Fraunhofer Institute for Experimental Software Engineering (IESE)

Kaiserslautem, Germany

Abstract: The empirical work in NASA’s Software Engineering Laboratory in
the 70’s and 80’s has contributed significantly to the maturing of the sub-
discipline of ‘experimental software engineering’. The development of
experimental technologies ranging from the GQM approach for measurement to
the EF approach for organizational learning provided the scientific basis; the
successful experiments within the SEL development environment served as
successful reference examples for others. The Fraunhofer Institute for
Experimental Software Engineering (IESE) was founded in Germany based on
the successful SEL principles. It was charged with speeding up the transfer of
innovative software engineering technologies into a wide variety of industry
sectors. The concepts of experimentation were developed further and used for a
wide range of purposes from applied research to technology transfer and
training. Already during the short history of IESE a successful track record of
transferring innovative technologies fast and with sustained success has been
established. This presentation focuses on the adaptation of the successful SEL
concepts to a different environment, surveys the wide range of applications of
‘experiments’ as engine for successful technology transfer in a human-based
development environment, and predicts a growing importance of experimental
work in the future.

1. Motivation. The software domain can be characterized by two major
facts: (1) The gap between state-of-the-art as taught at universities and
state-of-the-practice as ‘lived’ in most commercial software
development environments is-significantly higher than in other

1

engineering domains, and (2) the body of knowledge available to
practitioners consists predominantly of technologies (e.g., languages,
techniques, and tools), rather than methods and knowledge regarding
the effects of such technologies in practical development
environments. One conclusion is that progress in practice is not
hindered by lack of technology, but by lack of such latter knowledge
which hinders the transfer into practice. Let’s just illustrate the
problem for one example technology: There exists a very large
number of testing techniques today. However, little knowledge exists
as to the relative strengths and weaknesses of these techniques in
different industrial settings. So, why would a project manager decide
to use an alternative testing technique as opposed to the one in use for
several years. What is needed can be compared best to so-called
‘engineering handbooks’ in other engineering disciplines. Such
handbooks describe the available technologies together with their
applicability, strengths and weaknesses for different constraints. This
paper describes how such knowledge can be accumulated in a human-
based development environment via experimentation.

2. Experimentation. There exist many different ways of accumulating
software development knowledge. One very important form of such
knowledge is experience derived from actual application of
technologies. That means experience is based on product/process
feedback loops in that process technology is applied, the impact on the
resulting products is observed, and possible improvements regarding
the process technology are identified via root cause analysis. In the
context of this paper, experience resulting from projects accidentally
or experience existing implicitly only is not considered. However, all
experiences resulting from systematic hypothesis testing in either fully
controlled laboratory experiments or semi-controlled field
experiments and field case studies, and producing explicitly sharable
insights (models) are considered. Experiments are one of the pre-
requisites for sustained learning; it is much easier to change behavior
based on documented first-hand experience, rather than knowledge
from the world-at-large. Experiments are applicable to basic research
for the purpose of understanding, to applied research for the purpose
of packaging technologies together with information about their
effects in varying project contexts, to teaching & training in order to
experience the benefits of new technologies for one’s own
development tasks before project pressure could result in falling back

2

to the old technologies for the fear of risk regarding one’s own
performance, and to technology transfer for the purpose of adapting
new technologies optimally to one’s project context and providing
codbenefit.

3. The Role of Experimentation in Software Engineering. The
software domain is characterized by a number of specific
characteristics. The most important ones are that most development
technologies are human-based and that the data are less frequent and
mostly of non-parametric nature. The human-based nature of most
technologies makes (a) the change process particularly hard as the
‘execution engine’ human being needs to be convinced of the benefits
of changing to a new technology, and (b) the success of any new
technology depends on the adherence to the process guidelines
associated with that new technology. Both involves weighing the risk
of using the new technology versus the risk of staying with the old
technology. Basically, the cardinal question is ‘Does it work for
ME?’. Experience data from one’s very environment are an important
source of confidence for changing to and staying with a new
technology. The less frequent and mostly non-parametric nature of
software engineering data requires different techniques for data
analysis - especially the combination of qualitative and quantitative
analysis. Beyond that, many of the experimental techniques known
from other areas can be applied.

4. Available Tool Box for Experimental Software Engineering. The
existent body of technologies for experimentation in software
engineering itself is significant and growing constantly. Most of the
techniques have been initially created in (or have been at least
stimulated by) NASA’s Software Engineering Laboratory (SEL).
Among the most important technologies are

- the Goal/QuestiodMetric (GQM) approach for measurement (e.g.,
[Bas93. I], [Romgl]), supporting the derivation of metrics from a
comprehensive goal specification

- the Quality Improvement Paradigm (QIP) method (e.g., [Bas93.2]),
enabling the integration of sound project feedback for project
control with cross-project learning (NOTE: It adapts the
PladDo/ChecldAct approach from manufacturing to the specifics
of the software domain)

3

- the Experience Factory (EF) approach (e.g., [Bas93.2]), defining
extra learning related roles and integrating them with the
traditional software development roles

- a portfolio of experimental designs (e.g., [Bas86]), ranging from
controlled experiments to regular field case studies

- a variety of analysis methods (e.g., [Bri92]) for non-parametric
software engineering data, integrating qualitative and quantitative
analysis techniques

In addition, there exist

- a number of reference laboratory environments applying the above
experimental technologies such as NASA’s SEL as the ‘mother of
all laboratory environments’, Fraunhofer IESE in Germany, and
CAESAR in Australia

- a number of exchange forums such as the International Network
for Software Engineering Research (ISERN) for researchers or the
Software Experience Consortium (SEC) for practitioners

- a growing number of conferences (e.g., METRICS , SEL
Workshop) and journals (e.g., International Journal for Empirical
Software Engineering)

All this provides a sound starting point for experimental work. The
ISERN Network is open to everybody interested in further develop-
ing the experimental technologies, teaming up in concrete technology
experiment replication, and exchanging all kinds of experiences. The
contact address is ‘isern@informatik.uni-kl.de’ . The SEC Consortium
is open for application by companies active in the area of empirical
work or corporate experience management. The contact address is
‘ fshullafc-md.umd.edu’ .

5. Fraunhofer IESE: An Institute built on the Experimental
Paradigm. The Fraunhofer Gesllschaft e.V. in Germany is Europe’s
largest applied research and technology transfer organization. It
consists of 48 institutes ranging in application domain from material
sciences and production technology to information & communication
technology and life sciences. These institutes receive approximately
30% base funding from government; the remaining 70% of their
operating budgets have to be covered from industry project income.

4

The Fraunhofer Institute for Experimental Software Engineering
(IESE) became the 4Sth permanent Fraunhofer Institute [Rom96].
Founded in 1996, its area of competence is software engineering; its
applied research and transfer model is based on the experimental
paradigm. That means Fraunhofer IESE helps companies to establish
experimentally based learning organizations as a pre-requisite for
sustained improvements, and then helps them introduce new
innovative software development technologies (technical &
managerial). With the base funding from government, technologies
from basic research institutions are being evaluated via
experimentation, and packaged together with the experimental results
for transfer into specific domain and company environments.

Today, Fraunhofer IESE employees 80 full time scientists together
with about 60 part-time personnel such as students and consultants.
Th institute language is ‘English’; 25% of personnel is non-German.
The percentage of industrial income has risen to about 70% within
three years. Collaborations include a large number of Europe’s
leading companies in the sectors of telecom, automotive & aerospace,
and banking/insurance/trade .

Fraunhofer IESE has been created as the German instantiation of the
NASNSEL laboratory model. It was widely accepted that a closer
collaboration between academia and industry was needed. This
institutionalized model - allowing for long-term trusting relationships
between academia and companies - was the answer. The reference to
the working SEL example was one of the major arguments to finally
convince companies and government of the opportunity at hand.
Many of the concepts of IESE are based on SEL experiences by
myself during my tenure at the University of Maryland and my
involvement with NASNSEL during the 1986- 199 1 time frame.

The main SEL concepts adopted include

- provision of an environment in which researchers, software
developers, and customers can work together

- use of experimentation as a major research and technology transfer
engine

- establishment of long-term relationships with development
organizations

5

- exposing researchers to practice and practitioners to research
- have research being driven by practical needs (= applied research!)

However, there are some important differences compared to the SEL.
They include

- operation as a business due to the fact that Fraunhofer Gesellschaft
e.V. is a legal non-for-profit entity not associated with any
university or for-profit company environment (business plan for
140 employees!)

- tougher sales job for close academia/industry collaboration due to
a historically wider gap between academia and industry in
Germany as compared to the US

- need for critical mass in IESE core competence areas personnel-
wise due to the expectation by companies to support them
strategically (i.e., long-term, always with experienced personnel)

- need for application sector know-how in addition to software
engineering competence due to the fact that IESE collaborates with
companies from different industry sectors

- need for complex incentive structure in order to provide equal
motivation to researchers and practitioners working in IESE

Although, many of the experiences and lessons learned within the
SEL could be reused, the changes due to the collaboration culture and
heterogeneity in customer base posed the biggest challenges.
However, the achieved high standing of IESE within the scientific and
industrial community demonstrates the possibility of replicating the
SEL experience.

6. Useful Applications. This section describes briefly some of the
typical applications of the experimental paradigm within the
Fraunhofer IESE. These applications comprise - due IESE’s mission
- applied research, teaching & training, and technology transfer. It is
intended to describe the wide applicability and usefulness of
experimentation - even in a very industry oriented setting.

6.1. Applied Research. It has been firmly established at IESE that
applied research in software engineering produces new/refined/exis-
ting technologies together with recorded observations regarding their
effectiveness in one or a class of industrial setting (i.e., certain

6

constraints). These observations need to be produced by some
appropriate form of experimentation. These observations are only
useful, if the underlying experiment is documented well enough to be
repeatable by anyone challenging the findings or trying to replicate
them in a slightly different environment. Observations from non-
repeatable experiments do not contribute to the state-of-the-art. In that
context, it must also be agreed that experiments with negative results
are equally valuable. Negative results combined with qualitative
analysis investigating possible causes and deriving new hypotheses
contribute to learning. There exist only badly designed and/or
performed experiments, no bad results!

Such experiments have been done for most of the IESE technologies
ranging from software development to management and experimental
technologies. The most prominent experiments include the

- effectiveness & efficiency of step-wise abstraction code reading
(e.g., [Bas87])

- effectiveness & efficiency of perspective-based requirements
reading (e.g., [Bas96])

- maintainability of well-structured 00 programs (e.g., [Bri97])
- maintainability of well-documented (traceability from requiremens

to code) programs
- codbenefit ratio for product line development

All these experimental results are published in the literature. Most of
them are accessible through the IESE web site. More experiments on
the above as well as other topics are needed. Every software
engineering researcher should feel challenged to participate. The
International Software Engineering Research Network (ISERN)
provides a stimulating environment to learn, share and collaborate.
Please contact ISERN (-, isern@informatik.uni-
kl .de) !

6.2. Teaching & Training. Software engineering teaching and training
must include the topic of experimental methods (see e.g., CMSC735
at the University of Maryland OR SE2 at the University of
Kaiserslautern) as well as their practical application to self-experience
important software engineering principles (see examples from the
University of Kaiserslautern below!). The simple lecturing of software

7

engineering principles results too often in them being ignored during
the next development tasks. Again the issue is that changing behavior
requires motivation that the risk of change is manageable.
Experiments as part of teaching can provide the necessary motivation.
During practical industrial training such experiments can be repeated
for the same reason of motivation for change. In addition,
experimentation can demonstrate the applicability of some technology
to the specific company setting and suggest some necessary
adjustments prior to real use.

Together with the University of Kaiserslautemn Fraunhofer IESE has
developed a number of technology demonstration experiments which
are being repeated during every graduate level software engineering
class as well as during industrial training (modified according to
company constraints!). The standard experiments include

- demonstrating the superiority (i.e., effectiveness, efficiency) of
code reading over unit testing (adaptation of the old ‘Selby’
experiment) (e. g . , [Lo t9 61)

- demonstrating the superiority (better understandability, modifia-
bility) of well-structured 00 designs over worse structured ones

- demonstrating the superiority (better modifiability) of tractably
documented programs over less tractably documented ones

- demonstrating the superiority (i.e., effectiveness, efficiency) of
perspective-based reading of informal requirements over other
reading techniques

Each of these experiments has been performed at least three times.
Comprehensive laboratory packages are available describing the
experiment and providing key artifacts for easy replication in other
environments.

6.3. Technology Transfer. The purpose of experimentation in
technology transfer is twofold: First before the introduction of a
candidate new technology experimentation helps to convince
personnel (top management to invest in it, project management to
support it, and project personnel to ‘live’ it under project pressure) of
the potential benefits of a pre-packaged new technology, and it helps
to adapt pre-packaged technology to specific needs of the target
organization. Second during use of the new technology

8

experimentation helps to change the technology further in order to
optimize its effects, and it helps to re-enforce its continued use and, as
a result thereof, ensures its continued gains.

During its 3 year history Fraunhofer IESE has contributed to many
sustained process improvements in industry which would have been
impossible without experimentation (e.g., [Lai97]). An extensive list
of company references can be obtained from the IESE web site.

7. Outlook. Experimentation is becoming an integral sub-discipline of
software engineering. Reflecting the general needs of an engineering
discipline and the specific characteristics of the software domain, a
body of technologies and reference applications have been created.
The role of NASNSEL has been equally instrumental to the area of
experimentation as has been the SEI’S role to the area of assessments.
NASNSEL together with its off-springs (e.g., Fraunhofer IESE) has
pioneered the application of experimentation to speed up the
accumulation of shareable, testable & repeatable knowledge in
research, to raise a generation of true software engineers thru teaching
and training, and to speed up the infusion of innovative software
development technologies into practice in technology transfer
programs. More and more environments will recognize that
experimentation does not represent additional effort, but rather speeds
up the production of real contributions to the state-of-the-art in
software engineering and their transfer into practice. As the
performance of real experiments require laboratory set-ups at
universities or in companies, more of such environments must be
established.

I wish the SEL a successful future! May it spin off more
laboratory environments around the globe! May it be valued
inside NASA as highly as it is outside!

8. References.

3 [Bas93.1] Basili, Caldiera & Rombach, The GQM Paradigm, in ‘Encyclopedia
of Software Engineering’ (John J. Marciniak, Ed-in-Chief), John Wiley &
Sons, Inc., 1993. + [Bas93.2] Basili, Caldiera & Rombach, The Experience Factory, in
‘Encyclopedia of Software Engineering’ (John J. Marciniak, Ed-in-Chief),
John Wiley & Sons, Inc., 1993.

9

+ [Bas871 Basili & Selby, Comparing the Effectiveness of Software Testing
Strategies, IEEE Transactions on Software Engineering, vol. 13, no. 12, pp.
1278-1296, December 1987. + [Bas861 Basili, Selby & Hutchens, Experimentation in Software Engineering,
IEEE Transactions on Software Engineering, vol. 12, no. 7, pp. 733-743, July
1986. + [Bas961 Basili, Laitenberger, Shull et al, The Empirical Investigation of
Perspective-Basded Reading, International Journal of Empirical Software
Engineering, vol. 1, no. 2, pp. 133-164, 1996. + [Brig21 Briand, Basili & Thomas, A Pattern Recognition Approach to
Software Engineering Data Analysis, IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 93 1-942, November 1992. + [Brig71 Briand, Bunse et al, An Experimental Comparison of the
Maintainability of Object Oriented and Structured Design Documents,
International Journal of Empirical Software Engineering, vol. 2, no. 3, pp.

+ [Lai97] Laitenberger & DeBaud, Perspective-Based Reading of Code
Documents at Robert-Bosch GmbH, Information & Software Technology,

+ [Lot961 Lott, Rombach, Repeatable Software Engineering Experiments for
Comparing Defect-Detection Techniques, International Journal of Empirical
Software Engineering, vol. 1, no. 3, pp. 241-277, 1996. + [Rom9 11 Rombach, Practical Benefits of Goal-Oriented Measurement, in
Software Reliability and Metrics (Fenton & Littlewood, Eds.), Elsevier Publ.,
1991. + [Rom96] Rombach et al, New Institute for Applied Software Engineering
Research, International Software Process Journal, vol. 2, no. 2, 1996.

291-312, 1997.

V O ~ . 39, pp. 781-791, 1997.

9. Contacts. For further information about this paper, please contact the
author under ‘rombach@iese.fhg.de’. For further information
regarding the Software Engineering Chair at the University of
Kaiserslautern, please check ‘wwwagse.informatik.uni-kl.de’; for
further information about the Fraunhofer Institute IESE, please check
‘www.iese.fhg.de’ . For information about the International Software
Engineering Research Network (ISERN), please check
‘www .iese .fig. de/ISERN/’ or contact ‘infoaiese .fig. de’. For
information about SEC Consortium, please contact ‘ fshullafc-
md.umd.edu’.

10

11

Software Experience Center:
The Evolution of the

Experience Factory Concept

Frank Houdek and Kurt Schneider
DaimlerChrysler AG

Research and Technology
P.O. Box 23 60

D-89013 Ulm, Germany
{frank. houdek, kurt.schneider}@daimlerchrysler.com

Abstract

The experience factory concept, which was evolved at the NASA
Software Engineering Laboratory, is a promising concept geared at
facing the current needs in software development and software process
improvement. Therefore, we at DaimlerChrysler decided to implement
it in several business units to maintain and improve software engi-
neering competence. In our efforts t o establish the experience factory
concept, we identified some shortcomings resulting from (unstated) as-
sumptions. In this paper, we point out these assumptions and present
how we evolved the experience factory concept. In particular, we in-
troduced reinfusion concepts, concepts for experience evolution and
for cost/benefit-ratio of experience items. An example taken from our
business units helps to concretize our findings.

1 Introduction

Software engineering knowledge is becoming more and more a strategic busi-
ness competence - both for software and system developing companies. The
ability to produce high-quality software within a reasonable time and budget
is becoming critical for economic success.

The experience factory concept developed by Basili and co-workers in a
collaboration with the NASA Software Engineering Laboratory, the Univer-
sity of Maryland and the Computer Science Corporation [Bas89, BCM+92,
Bas93, BCR94, BC95, BM961 is a promising approach to build up and main-
tain software engineering knowledge related to the specific needs of an en-
terprise.

Hence, in 1997 DaimlerChrysler decided to implement the experience
factory concept within several software-intensive business units [HSW98,
LSH99, WHS99, HB991. In particular, we started initiatives in passenger
car development, military aircraft development and central IT services, each
of which is by the corporate research department. Our mission was to estab-
lish the experience factory concept within two to three years. The overall

1

mailto:kurt.schneider}@daimlerchrysler.com

goal of the initiatives was to improve software development competencies.
The individual goals, however, varied in the business units depending on
their specific demands. Central IT services, for instance, was interested in
improving their software contracting processes, whereas, in passenger car
development, defect profiles and defect tracking were important concerns.

At the beginning of our initiatives, we tried to instantiate the SEL’s
experience factory concept by building up an independent organizational
unit, defining experience documentation procedures and running measure-
ment programs. But these activities are long-term activities and the business
units involved were also seeking short-term benefits. Their motivation to act
as partners in the experience factory initiatives was to achieve significant im-
provements in their situation and sustain it within the initiative schedule.
As a consequence, we were forced to evolve the experience factory concept
in order to initiate short- and long-term experience-based improvements in
parallel. We call the resulting approach software experience center (SEC)
and we will discuss our findings in this paper in some detail.

1.1 Structure of the Paper

Section 2 briefly summarizes the SEL experience factory concept and em-
phasizes the assumptions behind it. Building on this concept, we introduce
three necessary dimensions of evolution for the ‘classic’ experience factory
concept in Section 3. Section 4 gives an example illustrating the evolved
concepts. Section 5 summarizes the findings of these paper.

2 The Origin: SEL Experience Factory

Process improvement is hard work. Deficits have to be identified, improve-
ment activities must be defined and implemented, and their effects mon-
itored. This is how most improvement approaches work. However, these
activities are only partially useful for a single project which has to create
a product within a given schedule and cost frame. To make improvement
activities successful in the long run, projects concerns have to be clearly
separated from improvement concerns.

This insight was the main trigger for the experience factory concept,
which is based on the quality improvement paradigm (QIP, see [BCR94]).
The experience factory concept proposes a (logical and organizational) sep-
aration of project organization (responsible for building products) and im-
provement organization (responsible for improving processes within and
across projects). The experience factory organization supports individual
projects by providing them with experience gained from work in previous
projects. The observations made in the new project are, in turn, used to up-
date the organization’s experience base (see Figure 1). And, a cross-project
learning process becomes alive.

2

Project organization Experience factory organizaijon

Figure 1: Experience factory concept [BCR94].

This concept is rather obvious. It helped to clear our mind. In many
improvement projects at DaimlerChrysler it helped us a lot [HSW98]. The
experience factory concept provides a long-term vision for improvement ini-
tiatives tailored to particular business units needs.

Even though this concept is obvious, it has several implications and
makes several assumptions:

0 Long-term activity. The improvement approach underlying the ex-
perience factory concept is the QIP. According to the QIP, process
improvements are, by their nature, long-term. First, the actual situa-
tion has to be basedlined. Then, improvement activities are defined,
implemented and assessed. Typical time-frames for QIP-based im-
provements are one to three years.

0 Additional efort . From the perspective of a single project, process
improvement and learning require additional resources (e.g. for mea-
suring) which do not pay off immediately.

0 Common understanding. An important step in every improvement
initiative is defining an improvement goal. To do so, people need to
know and articulate their needs accordingly.

0 Similar projects. The basic idea of the experience factory concept is to
learn in one project and to transfer the gained experience to another
one. The essential prerequisite is that both projects are sufficiently
similar.

0 Processes in place. Process improvement requires fairly mature pro-
cesses that are beyond the ad-hoc stage.

0 'Homo economicus '. Improvement activities have similarities with
farming. One has to seed now (spending some effort) to harvest (some
more) in the future. Common sense tells us that this is a reasonable

3

thing to do. However, humans do not always act reasonably with
respect to long-term economic considerations.

0 Will to change. Improvement is almost always tied with changes:
changing processes, changing responsibilities, changing personal be-
havior. Although it is reasonable to
change, people are often reluctant to do so.

But changing is never easy.

0 Pull for external knowledge. Learning across projects is essential in
the experience factory concept. This means, that people are willing
to learn and willing to accept knowledge and experience gained in
other environments (i.e., projects). Moreover, people have to ask for
knowledge, trawl for experience items, seek for better processes. So
there must be an active pull for helpful information.

0 Management support. Every change needs a powerful sponsor. To
bring the experience factory concept to life, permanent support from
powerful sponsors (i.e. management at all levels) is mandatory.

In most environments, there are some deficits concerning the issues men-
tioned above. In particular, a long-term commitment at all levels (manage-
ment, project members) is hard to uphold. An external observer would argue
that it is worthwhile to spend effort for activities whose return on investment
is not immediately yielded. However, project workers who are permanently
‘up to their necks in hot water’ have a slightly different perception. They
can accept only short-term initiatives. They want to see improvement right
now.

For these reasons it is not sufficient to introduce the ‘classic’ experience
factory concept in a ‘typical’ organization. In the next section, we show
how we have evolved the experience factory concept to cope with the above
mentioned issues.

3 Dimensions of Evolution

In our experience factory initiative at DaimlerChrysler, we began with the
‘classic’ experience factory concept. But after a short time it became obvious
that it is impossible to uphold the long-term commitment required without
short-term benefits for the persons involved (see [HSW98, WHS991). We
were forced to evolve the ‘classic’ experience factory concept.

Figure 2 sketches the identified dimensions of evolution graphically. In
the following, we focus on them in some detail:

0 Reinfusion concepts. The ‘classic’ experience factory concept em-
phasizes experience collection: for example, measurement programs,

4

Reinfusion concepts

“Quality of
information”

Figure 2: Dimensions of evolution.

Initial
seed,
evolution,
reseeding

model building, formalization and generalization. Reinfusion of expe-
rience, i.e. delivery of experience items into projects, is seen to happen
naturally (after some tailoring).
This assumption does not hold for several reasons: (1) People do not
ask for relevant experience items by themselves. Typically, they do
their job as best they can. Therefore, it is crucial to provide experience
items for the task at hand at the right time [FL0+96, LS971. (2) People
do not know that they might need some additional experience items.
Either they assume there is nothing relevant in the experience base
or they do not even recognize their current job as being experience-
intensive.

‘Quality of information. ’ Measurement based-information and derived
models are the prime experience items provided by the ‘classic’ expe-
rience factory. This type of experience is desirable because it provides
detailed and objective information. However, gathering it is labori-
ous and time-consuming. The time delay from experience collection
to harvested benefit is fairly long (sometimes several years). Staying
alive in view of short-time expectations, experience items with shorter
reuse-cycles are also required. Of course, their potential benefit might
be only slight, as the information is less consolidated and more sub-
jective. Figure 3 gives examples of different types of experience items.
It also qualitatively depicts the trade-off between the effort needed to
build a particular experience item and its expected benefit. Before
building a new experience item, the utility (i.e. the ratio of expected
benefit and needed effort) should be assessed.

Initial seed, evolution and reseeding.

The ‘classic’ experience factory concept is driven by the QIP. This

5

GOM-based
measurement
program

External
experiment

Communities
of Dractice Oualitativ, 2 solicited

observation

Reusable

External expertise

- 1 Email repository

Expected benefit

Figure 3: Quality of information.

implies that there is always a clear goal for improvement activities
and experience collection. This assumption does not hold in practice.
We often observe a moving-target situation, i.e. the goal and the as-
sociated needs change over time, sometimes by accident, sometimes
due to the experience items delivered. A more dynamic approach is,
thus, needed to avoid wasting a great deal of effort for experience-
building activities (e.g. measurement programs) which provide expe-
rience items that are not really helpful. A closed feedback-loop of
seeding (i.e., providing some cheap experience items), evolution (of
needs) and reseeding (i.e. adjusting experience items and experience
collection processes) is essential [Fis98].

4 Example

In this section, we present an example taken from our experience factory ini-
tiatives to illustrate how we evolved the ‘classic’ experience factory concept
in practice.

This example is from the central IT services business unit. This unit is
involved in large projects developing systems for administrative purposes like
global sales, warranty management or diagnosis. Typically, such systems are
not built in-house but contracted out to one or more suppliers. Central IT
services is responsible for contractor management and associated activities
such as acceptance processes or quality definition.

Our mission (corporate research) was to establish an initial experience
factory group there. The experience items they were to maintain were aimed
at supplementing all the activities concerned with contracting software out
and performing acceptance tests at delivery time. In the beginning of our

6

activities, we acted as ‘experience factory guys’. With time, people from the
central IT services were to take over our roles.

We started (according to the QIP) with an extensive baselining to iden-
tify the existing processes, quality needs, etc.

During this work, we encountered a ‘pull’ situation, i.e. demand for
experience items (for, in this case, processes for contract evaluation) arose.
This issue has not been covered by the currently implemented experience
factory activities so far. Setting up a serious analysis of existing processes
(as the ‘classic’ experience factory concept would imply) would have resulted
in a long-term activity. Instead, we performed interviews, studied relevant
literature and (company) standards, tailored the findings towards the actual
needs and provided simple guidelines (how-to notes).

Founding on our baselining activities, we encountered some other ques-
tions which were not directly articulated by the projects but which might
become vital in future activities (e.g. risk assessment, role of quality man-
ager). Consequently, we also built experience items for these topics. Unlike
the contract evaluation process item, we had to sell these experience items.
This was mainly, because people were not aware of the utility of these issues
(e.g. risk management).

We used selling and applying experiences to improve the existing expe-
rience items. Figure 4 depicts the flow of experience across several projects
in the central IT services business unit. However, there is no indication
whether a flow of information was initiated by pull or push. There were
variations across projects and over time.

-Contractual issue
Risk portfolio

-OM tasks

Figure 4: Experience transfer at central IT services.

7

It is important to realize that there was neither an initial pull for most
of these items nor a clear agreement that these and only these items were
relevant.

With respect to the above mentioned evolution dimensions, we made the
following contributions:

0 The created experience items were fairly cheap to build with only
a limited benefit but a positive cost/benefit ratio (e.g. checklist for
contracts, initial quality model). Experience items of better quality
were only built in cases where return on investment was anticipated
within a reasonable time-frame. Especially the fact that the experience
factory initiative showed benefit to the projects within a rather short
time helped us greatly to become accepted in this business unit.

0 It was not clear from the beginning where to go as the people involved
were unable to articulate their particular needs. So we were not able
to start with a clear goal in mind but had to work iteratively and prov-
idently. We started with an initial seed (hints on writing contracts)
and evolved the experience base content over time. Starting a QIP
program would have not produced the same output. The goal identi-
fication would only have raised topics which the people were aware of.
However, we found some items to be extremely helpful which would
not hove been raised as people did not know them.

0 Rarely did people seek for experience items. So the assumption that a
filled experience base is enough to make an experience factory helpful
proved to be false.
More often, we (as the experience factory guys) had to push our items
in meetings and project planing sessions. More details on the relation
of pull versus push (which is the main reason for reinfusion concepts)
can be found in [WHS99].

5 Summary

The experience factory concept which was evolved at the NASA Software
Engineering Laboratory is a promising concept geared at the current needs
in software development and software process improvement. It addresses
the burning issues of a business unit rather than proposing one-size-fits-all
solutions.

To understand its transferability to other environments, it is important
to understand its evolution and its assumptions. The experience factory
concept is the outcome of many years of work performed by Basili and co-
workers [BCM+92] at the NASA SEL. It is a result of process improvement
activities according to the PDCA principle (i.e. QIP [BCR94]) and the

8

perception that successful improvement activities must be separated orga-
nizationally from project work. At SEL, it was never the goal to ‘build
an experience factory’, but the resulting organization was a-pos t called an
experience factory after it grew for several years.

If you intend to establish the experience factory concept within a fairly
short time-frame (e.g. two to three years), some shortcomings of the concept
become obvious resulting from (unstated) assumptions behind the concept.
Primarily, it is assumed that project people believe in the (long-term) ben-
efits of an experience factory.

In our experience factory initiative at DaimlerChrysler, we identified
some areas in the experience factory concept that need to be evolved. In
particular, we recognized the need for reinfusion concepts, concepts for ex-
perience evolution and a continuum of experience items ranging from easy-
to-build but short-term-benefit items (e.g. how-to notes, expert networks)
to solid high-impact packaged experience (e.g., results from GQM measure-
ment programs).

We call the evolved experience factory concept the ‘software experience
center’ (see Figure 5).

p c % , n
L V .J

Experience A
factory Exrensions
concepr -1

SEC

Figure 5: Software experience center.

Acknowledgements

I would like to acknowledge the contribution of everybody involved in our
experience factory initiatives. Without their collaboration, patience and
encouragement our efforts would not have been possible.

References
[Bas891 V.R. Basili. The experience factory: packaging software experience. In

Proceedings of the 14 t h Annual Software Engineering Workshop. NASA
Goddard Space Flight Center, Greenbelt MD 20771, 1989.

V.R. Basili. The experience factory and its relationship to other im-
provement paradigms. In I. Sommerville and M. Paul, editors, Proceed-
ings of the 4 th European Software Engineering Conference (ESEC),
number 717 in Lecture Notes in Computer Science, pages 68-83.
Springer Verlag, Berlin, September 1993.

[Bas931

9

[BC95] V.R. Basili and G. Caldiera. Improve software quality by reusing knowl-
edge and experience. Sloan Management Review, 37(1):55-64,1995.

[BCM+92] V. Basili, G. Caldiera, F. McGarry, R. Pajerski, and G. Page. The
Software Engineering Laboratory - An operational software experience
factory. In Proceedings of the 14 th International Conference on Software
Engineering (ICSE), pages 370-381, May 1992.

[BCR94]

[BM96]

[Fis98]

[FL0+96]

[HB99]

[HSW98]

[LS97]

[LSH99]

[WHS99]

V.R. Basili, G. Caldiera, and H.D. Rombach. Experience factory. In
J .J . Marciniak, editor, Encyclopedia of Software Engineering, volume 1,
pages 469476. John Wiley & Sons, New York, 1994.

V.R. Basili and F.E. McGarry. The experience factory: how to build
and run one, March 1996. Tutorial at the 18 t h International Conference
on Software Engineering (ICSE).

G. Fischer. Seeding, evolutionary growth and reseeding: constructing,
capturing and evolving knowledge in domain-oriented design environ-
ments. Automated Software Engineering, 5(4) :447-464, October 1998.

G. Fischer, S. Lindstaedt, J . Ostwald, K. Schneider, and J . Smith. In-
formaing system design through organizational learning. In Proceedings
on the Pnd International Conference on the Learning Society (ICLS),
pages 52-59, Northwestern University, Evanston, 1996.

F. Houdek and C. Bunse. Transferring experience: A practical ap-
proach and its application on software inspections. In Proceedings on
the SEKE Workshop on Learning Software Organizations, pages 59-68,
Kaiserslautern, Germany, June 1999.

F. Houdek, K. Schneider, and E. Wieser. Establishing experience fac-
tories at Daimler-Benz - An experience report. In Proceedings of the
20 th International Conference on Software Engineering (ICSE), pages
443-447. IEEE Computer Society Press, 1998.

D. Landes and K. Schneider. Systematic analysis and use of experiences
from software projects at Daimler-Benz. In A. Oberweis and H.M.
Sneed, editors, Software Management '97, pages 63-73. Teubner Verlag,
Stuttgart, 1997. (In German).

D. Landes, K. Schneider, and F. Houdek. Organizational learning and
experience documentation in industrial software projects. International
Journal on Human-Computer Studies, 51:643-661, 1999.

E. Wieser, F. Houdek, and K. Schneider. Systematic experience trans-
fer: Three case studies from a cognitive point of view. In Proceedings
on the International Conference on Product Focused Software Process
Improvement, number 195 in VTT Symposium, pages 323-344, Oulu,
Finland, June 1999.

10

U c m
-c
0

CI a
a,
0 r s

oa,
L .-

w a ,

.. * c
0 0

x
a,

I
x
S m
LL
L

W

m 2
3
CI
rc
0
CT)

L
rc

c,

E
3

c/)
a
a,
0 c

c,

~

0
0

c/)
a
a,
0

c, I

L >s
0
0 m
c, 3

a,
r 0

m
.-
c,

S
0 0

0 .-
> cc .-

c,
3 - S

0 .- E
L

n
a, >

a,
0
S
a,

tij > 0
5 0

%
c,
3 - 0

tij a
L .- 0

5
>s
S m a
E

cc
0 cc

0 S
c/)
S
0
c/)
S

.-

;

0
c/)
3
S

.-
cc
.-

>s
c, 3 a,

>s
k
E
E

.- - m
3 .- >

0
m
" "

a,

I
L b r

c/) 0
.-
n
e 6 " "

e e e e

U c m 2 G
s o 3 .- a,
.-

-c
0

L
a,
Y

a,

5 E a, > . s
L

m
c;

c,
S

E a
0

(3
5
5

c, a
a,
0
S
0
0
>s

0 m
8
c,

cc

a, >
a, n a, -- > m L c 0

0 m
c,

cc

a,
k

c, cc m 0
5 t

a,
0 m a
c/)

3
c, cc
0
c/)
a, >
0
a L

a,
0
S
a,

a,
0 -
S
a,

.-
tij n

S m

m
I
L .-

tij a
X a, E .- S m 1

W
c/) .- 8 x >s

0
0 m

L

c,

i m
c,

.-
> . .

c,
S
0 a
.-

.- - .-
E
n
S m

8 irj
c,
0
3

c,

8 cc
a,
0 . .

S L
0 0)

S

m
c/)

.-
c, L

c,

n
0

.-
0
S m
S .-

r
a, .- cc

0
c,

- .-
>
0

I

.-
L a
S
m .-
2

- m
0
0)

tij s .-
E &

X
W
” ”

a
I

LL
I

e e

- a
X
W

~. " t - 0

e

.-
c/)
c/)
0 a

U c m
-c
0

n
c/) n

S m
-
a, n
E

n -
3 a n a, a,

S

.-
T

h
CI .- aj a,

c/)
3
a,
L

.-
1 - m

a,
- m
3
0 m
c,

c/)
a,
c/)
c/)
a,
0

a 2

c/)

0
c,
L

cc

0

c/)
0
a,

a

c,
1

c,

'0'
L

T

cc
a,

0
m
.-
c,

c,
S

E

.- E

a, >
0
L

E
tij
c,

I
0)
S
0 -

5
c,
c,
a,
d

3

c/)

S
a,

3
0

c, .-
c,

L
L

5 a,
3
a, a,

d r
a
a,
0
0 m

c,

c,
S

E
S
0
L

.-
0 cc

0 0 a a
3
c/)

S
c,

E

F

a,
0) m
S

c,
S m
c/)
S
0

c,

0

E
c/)

.-
a,
0 m

.-
c, 5 cc cc

c,

cc

3
c/)

0

.-
k

.-
S m
L
0

E

L .- n
S m
c/)
c,

0
c,

. . .- - a
S .-

c,
3
0
d m
0)

>
S
a, 0)

S
-
"c/)
3
0

a,
N a, 8

c/)
c/)
a,
0
0

c, .- .-
S
0)
0
0
a,
a,
a
0
a, a

L

-

d m
c/)
c,

c,
S

E
a, >

.-
F 3 l i L L

3 5
0) m

a,
k 3 a,

a,
0
S
a,

L
S

E
E
0
0

0
0
a, a,

a
0
a, a
I

- L
3 0

L

.- E 8
a,
0
L

2

0
0
Y

0
F .- b

c/) tj L

0
I
" "

Q
X
W e e e

U c m
-c
0

S
0
3
.-
CI

-
0 >
W

irj
S
0
m
.-
c,

> .-
c,

E
S
m .-

S

a,
d

.-
-
.-
-
cc
a,
8
E
a,
d
0
c,

a, >
m >
.-
c,

0 - L
S .-

L
0)

L
.-

c/)
S
c,

E
S
0
L .- >
S
a,

3
0
L
c/)

c/)
c, .-
cc
a,
S
a,
d

E
tj
c,

L
0
0

e

-
S
0
3
.-
c,

0
5

0)
S

3
a,
>
a,
.-
L

W

e

a,
0
S
a, .-
tij a

cc
0
S
0 .-
c,
3
0 >
W

-

e

c)
c
0 m s

c\I
c
0 m s

c
0 m s

FJ
5
g
E

.. ...,

cn
Q
a,
0
S
0
0
S
0
cn
3
S
a,

CI

.-
I.

.-
E

W

8

8
8
a,

U c m
-c
0 t

c/) .-

t

L"
a, 0)

S
0
m
c/)

-

.-

L

cc 0

?
c/)

m
c, .-
3
c/) 5

3
0 a, n

>
0
.-

8 c,
S

L a
0

n
a,
0
a, a
X
a,

c,

.-
0
&
0)
S
e m
c/)

.-
c,

Y

W
c/)
1

Y 5 c, a
a,
0
T

T L
0 a,

0 s
a,
0

.-
0)
S
S
.-

c/)
3
S
a,

cc
.-
L

n
0
0
0)

c/)
S
c,

E
a,

L
0
0 tij a

0 cc a,
0
S
a,

.- m
0)

>s

0 m
8
c,

S -
cc
0
>s
c, .-

.- a,
0 - a,

0 - c, a
a,
0 c

>
0
L

.- E
E

.- a,
L
c,

L

3 tij a
X
W

6 6 cc m a,
0
S
a,

.-
tij a
X
W

.-
0)
S tij m

3 a "
"

0)
S

~

0
0 a .-

c,
S
a,
S

a,
k
3
c,

X
W

.- .-
tij a
X
W

n .- tij
c,

>
0
& E

E
3

e e e

0
cc
0
c/)

1' CA e e e

Session 2: Object Oriented Testing and Reading

Linda Rosenberg, SATC/Goddard

SEW Proceedings

Melissa Major, Software Architects

Guilherme Travassos, University of Maryland

SEL-99-002

Risk-based Object Oriented Testing

Linda H. Rosenberg, Ph.D. Ruth Stapko Albert Gallo
NASA GSFC SATC NASA, Unisys SATC NASA, Unisys

Code 302 Code 300.1 Code 300.1
Greenbelt, MD 20771 Greenbelt, MD 20771 Greenbelt, MD 20771

301-286-0087 301-286-0101 30 1-286-80 12
~

Rstapko@pop3 00 .g s fc .nasa .gov A1 . Gallo@g s fc .nasa .gov

Software testing is a well-defined phase of the software development life cycle.
Functional ("black box") testing and structural ("white box") testing are two methods of
test case design commonly used by software developers. A lesser known testing method
is risk-based testing, which takes into account the probability of failure of a portion of
code as determined by its complexity. For object oriented programs, a methodology is
proposed for identification of risk-prone classes.

Risk-based testing is a highly effective testing technique that can be used to fiid and fix
the most important problems as quickly as possible. Risk can be characterized by a
combination of two factors: the severity of a potential failure event and the probability of
its occurrence. Risk can be quantified by using the equation

Where i =1,2,. . .,n. n is the number of unique failure events, Ei are the possible failure
events, p is probability and c is cost.

Risk-based testing focuses on analyzing the software and deriving a test plan weighted on
the areas most likely to experience a problem that would have the highest impact
[McMahon]. This looks like a daunting task, but once it is broken down into its parts, a
systematic approach can be employed to make it very manageable.

The severity factor c(Ei) of the risk equation depends on the nature of the application and
is determined by domain analysis. For some projects, this might be the critical path,
mission critical, or safety critical sections. Severity assessment requires expert
knowledge of the environment in which the software will be used as well as a thorough
understandmg of the costs of various failures. Musa addresses how to estimate the
severity of software failures in the discussion of "Operational Profiles" in his book,
Software Reliability Engineering. Both severity and probability of failure are needed
before risk-based test planning can proceed. Severity assessment is not addressed here
because it involves so much application-specific knowledge. Instead we confine the
remainder of the discussion to the first part of the risk equation, ranking the likelihood of
component failures, p(Ei), and a way to capture the information directly from the source
code, independent of domain knowledge.

The first task of risk-based testing is to determine how likely it is that each part of the
software will fail. It has been proven that code that is more complex has a higher

1

incidence of errors or problems [Pfleeger]. For example, cyclomatic complexity has been
demonstrated as one criterion for identifying and ranking the complexity of source code
[McCabe]. Therefore, using metrics to predict module failures might simply mean
identifying and sorting them by complexity. Then using the complexity rankings in
conjunction with severity assessments from domain risk analysis would identify which
modules should get the most attention. But module complexity is a univariate measure,
and it could fail to detect some very risk-prone code. In particular, object oriented
programming can result in deceptively low values for common complexity metrics. The
nature of object oriented code calls for a multivariate approach to measure complexity
[Rosenberg].

We are going to narrow the topic further and focus specifically on object oriented
software. The Software Assurance Technology Center (SATC) at NASA Goddard Space
Flight Center has identified and applied a set of six metrics for object oriented design
measurement. These metrics have been used in the evaluation of many NASA projects
and empirically supported guidelines have been developed for their interpretation. The
metrics are defined as follows:

1.
2.

3.

4.

5.

6.

Number of Methods is a simple count of the different methods in a class.
The Weighted Methods per Class (WMC) is a weighted sum of the methods in a class
[Chidamber]. If the weights are all equal, this metric is equivalent to the Number of
Methods metric. The Cyclomatic Complexity [McCabe] is used to evaluate the
minimum number of test cases needed for each method. Weighting the methods with
their complexities yields a more informative class metric.
Coupling Between Objects (CBO) is a count of the number of other classes to which
a class is coupled. It is measured by counting the number of distinct non-inheritance
related class hierarchies on which a class depends [Chidamber]. Coupled classes
must be bundled or modified if they are to be reused.
The Response for a Class (RFC) is the cardinality of the set of all methods that can be
invoked in response to a message to an object of the class or by some method in the
class [Chidamber].
Depth in Tree (DIT) - The depth of a class within the inheritance hierarchy is the
number of jumps from the class to the root of the class hierarchy and is measured by
the number of ancestor classes. When there is multiple inheritance, use the maximum
DIT.
Number of Children (NOC) - The number of children is the number of immehate
subclasses subordinate to a class in the hierarchy.

Having defined the metrics, we need interpretation guidelines to assist in identifying
those areas of code deemed to be at high risk. For over three years, the SATC has been
collecting and analyzing object oriented code written in both C++ and Java. Over 20,000
classes have been analyzed, from more than 15 programs. The results of the analyses
have been discussed with project managers and programmers to identify threshold values

2

that do a good job of discriminating between “solid” code and “fragile” code.* Once the
individual metric thresholds were determined, analysis revealed that a multivariate
approach provided an excellent basis for planning risk-based testing.

When we fiist began to apply some of the traditional metrics to object oriented code, we
saw that their values were generally much lower than we were accustomed to seeing for
functionally written code. Judging by the old thresholds, the 00 code appeared to be
much less complex and much more modular than the non-00 legacy code. But because
of the fundamentally different way an 00 system is built, the low numbers were often
very deceptive - ignoring the interactions between classes, and missing the complexities
due to the use of inheritance. The following threshold values for the individual metrics
were derived from studying the distributions of the metrics collected.

Number of methods (NOM) - I 20 preferred, I 4 0 acceptable per class. The
counting tool included explicit constructors and destructors in the method counts, so
these thresholds are inflated. Taking that into account, the recommended number of
actual implemented methods translates to under 10 per class.

Weighted Methods per Class (WMC) - I 25 preferred, I 4 0 acceptable. The
number of methods and the complexity of those methods are a predictor of how much
time and effort is required to develop and maintain the class. While the NOM may be
inflated by the beneficial use of constructors, WMC provides a better idea of the true
total complexity of a class.

Response for Class (RFC) - I 50. We have seen very few classes with RFC over
50. If the RFC is high, this means the complexity is increased and the
understandability is decreased. The larger the number of methods that can be invoked
from a class through messages, the greater the complexity of the class, complicating
testing and debugging. Making changes to a class with a high RFC will be very
difficult due to the potential for a ripple effect.

RFC/NOM I 5 for C++, I. 10 for Java. This adjusted RFC metric does a good
job of sifting out classes that need extensive testing, according to developer feedback.
The Java language enforces the use of classes for everything, which automatically
dnves up the value of this metric.

Coupling Between Objects (CBO) - I 5. A high CBO indicates classes that may
be difficult to understand, reuse or maintain. The larger the CBO, the higher the
sensitivity to changes in other parts of the design and therefore maintenance is more
difficult. Low coupling makes the class easier to understand, less prone to errors
spawning, promotes encapsulation and improves modularity.

Depth in Tree > 5 means that the metrics for a class probably understate its
complexity. DIT of 0 indicates a “root”; the higher the percentage of DIT’s of 2 and
3 indicate a higher degree of reuse. A majority of shallow trees (DIT’s < 2) may
represent poor exploitation of the advantages of 00 design and inheritance. On the
other hand, an abundance of deep inheritance (DIT’s > 5) could be overkill, taking
great advantage of inheritance but paying the price in complexity. When there is such

*It should be noted that the values of some of the 00 metrics depend just as much on the design as they do on the
actual coding. Much of the complexity of an 00 system is fully determined before the programmers begin to write the
code. Design complexity measurement is another topic that deserves researchers’ attention.

3

liberal use of inheritance, the aforementioned class metrics will understate the
complexity of the system.

Number of Children (NOC) The greater the number of children, the greater the
likelihood of improper abstraction of the parent and need for additional testing, but
the greater the number of children, the greater the reuse since inheritance is a form of
reuse. While there is no “good” or “bad” number for NOC, its value becomes
important when a class is found to have high values for other metrics. The
complexity of the class is passed on to all of its child classes and total system
complexity is greater than it seemed at first glance.

A single metric should never be used alone to evaluate code risks, it takes at least two or
three to give a clear indication of potential problems. Therefore, for each project, the
SATC creates a table of high risk classes. High risk is identified as a class that has at least
two metrics that exceed the recommended limits. Table 1 is an example of information
that would be given to a project. The classes that exceed the expected limits are shaded.

Table 1 : High Risk Java Classes

4

The purpose of the above information is to identify the classes at highest risk for error.
While there is insufficient data to make precise ranking determinations, there is enough
information to justify additional testing of classes which exceed the recommended
specifications. It is up to the project to determine the criticality of these and the other
classes to make the final determination on testing. Allocating testing resources based on
these two factors, severity and likelihood of failures, amounts to risk-based testing.

Object oriented software metrics can be used in combination to identify classes that are
most likely to pose problems for a project. The SATC has used the data collected from
thousands of object oriented classes to determine a set of benchmarks that are effective in
identifying potential problems. When problematic classes are also identified by domain
experts as critical to the success of the project, testing can be allocated to mitigate risk.
Risk-based testing will allow developers to find and fix the most important software
problems earlier in the test phase.

5

References

Chidamber S.R. & Kemerer, C.F., “Towards a Metrics Suite for Object Oriented
Design”” Proc. OOPSLA, 199 1.

Li, W. & Henry, S., “Maintenance Metrics for the object Oriented Paradigm”, 1’’ Int’l.
Software Metrics Symposium, Baltimore MD, 1993.

McCabe, Thomas J., “A Complexity Measure ”, IEEE Transactions on Software
Engineering SE-2, pp 308-320, 1976

McMahon, Keith, “Risk Based Testing”, ST Labs, WA, 1998.

Pfleeger, S.L. and Palmer, J.D., “Software Estimation for Object Oriented Systems,”
Int’l. Function Point Users Group Fall conference, San Antonio TX, 1990

Rosenberg, Linda, and Gallo, Albert, “Implementing Metrics for Object Oriented
testing”, Practical Software Measurement Symposium, 1999.

6

"
0 "
0

cro
c\l "
0 m

6
I

+-
0
rxlo
4
m
e
d
3 cw
tsb
0
0
cc) a
0

8

k
Q)
N
.d

E 0
cc)

+-
0
rxlo
4
2
d
3 cu

0
0
cc) a
0

k
Q)
N
k e
.e(

E"

m aJ
h
9
a c,

0 s
a
c,

kl

cb aJ
N
.d

h aJ
0 a
c,

h,
aJ
h
9 m
.rl a c.

n
.d wi
'I
a

II
A
m

2

c1
S
Q) >
Q)

3
2 -
.I

Ca +
Q)

9
.I

tn
tn
0
Q
s
c1
I
.I

Q) s
tn
c1

.I

w-

.I

9
Ca
9
0
k
Q) s
c1

tn
Q
.I

L
3
0
0
0
tn

'CJ
c1
.I

!t

S
Q) >
Q)
S
Ca

0

c1

+
c1

8
0
tn
0
.I

E
0

0,

I a
0

a a a

0, m

2
I
c.
0
Q)
k
9
I a
E
2

2

I
E
0

E
a Q)

;
0

v)
L

c.
0
e
0
0
A
0, r

a
E

0,
L
Q) Q) a L
.I 3

Q)
h

Q)
.I

& E A = a
.I

a
c.
0
I m
0
0

2
I
I

Q)
m
E

E a
k
0
I
m

0, m
+a

a
E a

r

4
0

0,

E

a O
L E m

0 0 0 .I L
0 - 3

I
E

0
2
B
0
0
k a
9
0

0,

I
k a a

r

Q)
h
rs, 0
Q)
k Q)

0
h n

i-
W
0
I s

9
0
m
Q)

5
a c. e

H

cb m E a a
m 0 aJ m

c, E ; a 0 I

m I
0

u”
0

e.

cb aJ
c, a
m
0
m
.rl

c,

2
aJ
h

0

aJ
0
E a
h aJ
c,
.rl

cr
E
H

rslD
E
.rl m

aJ
rslD a
m
m aJ E

E
0 z
4
J

0
A
c,

ccr
0
k
Q)
9
€
E
r(

0
J E
*
2
G
k
Q)
PI
s
0
A
c,
Q)

a
Q)

M
3
*C(

d
Cj

a

a
A

S A
m M

u
k aJ a

0
c!
I aJ

.;3

E
c.
0
k aJ
h

9
E

sassep 4 0 JaqurnN

4
4

E

v)
I-
e7
A

v)
I-

f;:
hl
e7

v)
hl

f;:
I-
hl

v)
I- s
hl
hl

v)
hl
E33 I I
I-

v)

(D
hl

v

2 - z

u
k
0 c.
aJ

0 a
2
m

2

m
c,
.C(

a
E a
a
Q)
m

E
.C(

0

h
h

0
0
Qo

0
0
W

0 0
0 0
d N

0

0 0 0 0
0 0 0 0 0
0 0 0 0
Q o W d N

8
A

8 v

8
A

8 v

v)
Y
r
N

0

2
r

v)
r
r
r

I

0
r
w

I B

s
0

r r r r r

h
Q) m
h a
Q)
A
H

d

a

0 0 .=

0

0

0

m
c)
k
I aJ
.m

E
h
E

0

ai
9
a >
m

v)
v) m

m

a
A

MI

0
0
cl
I
c, m
0

n
n
n

0 E 'd

W "

033
s

n
* +

d

n
a,
%
0
r"

k"
a,
MI
a,

2
e(

0 --

k
a,

Using Guided Inspection to Validate UML Models
Melissa L. Major and John D. McGregor

Software Architects
Guided inspection is an inspectionheview technique that is “guided” by test cases. Inspections are used to
provide a detailed examination of a design or program by a human, as opposed to a machine’s execution of
a prototype or completed application. However, even Fagan-style inspection processes focus more on the
form of the inspection process rather than the substance of the material being inspected. Standard
inspection techniques also focus on examining what is in the inspection material rather than determining
whether there is something that is missing from the model or code.

These standard inspections are often a top down reading of the code or a scan of a diagram. The top down
approach makes the measurement of coverage straightforward but it is more difficult for the inspector to
ensure that appropriate connections have been made between objects. The use of test cases means that the
inspection process can address more than just the syntax of the diagram or code being reviewed. The test
cases come from test plans that are already a required part of the software development process.

Techniques such as checklists have been used to summarize the results of an inspection and to ensure that
the inspector does a thorough job. Guided inspection supplements the checklist with the testing concept of
“coverage”. Coverage measures determine how much of the product being inspected has been examined.
Test cases are selected from the test plan so that, for example, every use case is represented by at least one
test case.

Studies have reported widely varying savings ratios for fiiding faults early in the development process as
opposed to during the compilation or system test phases. For example, IBM reported that repairing a fault
found at system test time may cost as much as 100 times the cost of repairing the same fault found during
design. With this amount of margin even a technique that is relatively expensive can still result in time and
cost savings.

The Testing Perspective Applied to Inspections
Applying a testing approach to inspections provides several benefits. In this section we examine these
benefits and provide guidelines for the inspection process that ensure these benefits are realized.

0 bjectivity
For testing to be effective it must be conducted objectively. A person testing their own code is seldom
sufficiently objective to achieve optimum results. If the person has made a wrong interpretation of the
inputs to their process, that mistake will simply be carried forward into the test cases. A second person, or
even an automated tool, will provide a different, although not always correct perspective.

Guideline #1 ~ Select inspectors from outside the immediate development team.

Traceability
For testing materials to be maintainable it must be easy to map changes in the model to needed changes in
the test scenarios. In an iterative development environment changes occur frequently to all parts of the
project. Changes in requirements are reflected in changes to the use cases. Changes in class specifications
should signal the need for regression testing of the effected parts of the model.

Guided inspection uses scenarios derived from the use case description as the primary test case description.
A project should maintain a matrix that associates a package with all the use cases for which that package is
needed. Then each time changes are made to a package, the affected use cases and scenarios are easily
identified.

Guideline # 2 ~ Maintain a mapping between use cases and the classes/packages that
realize those use cases.

Testability
For testing to be possible, the model must be testable. This implies that the model is sufficiently specific to
support the evaluation of test execution results. Domain models are general by design and there is a fine
line between vague generality and sufficient detail to support testing.

Guideline # 3 ~ Assign a team member to write test cases as the modeling proceeds.
Have the “testing” domain expert review these. Feedback, into the modeling process,
any information indicatingplaces where the model is too vague.

This is common advice that we give to process defiers at all levels. There should be a validation activity
for each development phase. Preparation for that activity should proceed in parallel with the development
activity. This allows the act of preparation to actually help improve the product before the formal
validation. Writing test cases is an excellent technique for providing continuous feedback during
development.

Coverage
For testing to provide us with confidence, we need to know how thoroughly the product under test has been
examined. The general term for this type of metric is coverage. When we speak of “functional” testing,
we mean that the coverage will be expressed in terms of the functional specification of the product under
test. The metric is chosen to give some notion of completeness at the appropriate level.

For guided inspection there are two different possible bases for coverage: the class/state/activity diagrams
and use case dagrams. The use case diagram is a good source of scenarios; however, we are more
concerned that the domain model contains a complete set of concepts for the domain. These are
represented in the class diagram and further clarified in the state and activity diagrams for each class.

Guideline # 4 ~ Use copies of the model’s diagrams and mark off each element in a
diagram as it is used in a test scenario.

Developing a test scenario for each actor in the use case diagram is a minimal level of coverage. One
scenario per primary use case is a stronger coverage criterion. Covering every primary use and then adding
coverage for all “alternate courses of action” for use cases that are rated frequent and critical is an even
stronger criterion. Once the set of scenarios are run through the model, the resulting coverage of the class
diagram and state diagrams provides a check of the thoroughness with which the model has been inspected.

Criteria for a Good Model
The Guided Inspection evaluation criteria used by models are described more completely in [l]. They are:

correctness
completeness
consistency

Correctness is a measure of how accurately the model represents the information. Correctness of the
model is really the aggregate of judgements from the individual test cases. Each test case includes a
description of the results expected from executing the test case. This expected result is based on a source
that is assumed to be (nearly) infallible, a “test oracle”. The oracle usually is a human expert whose
personal knowledge is judged to be sufficiently reliable to be used as a standard. The tester judges the
accuracy of the model’s representation of concepts relative to the results expected by the oracle.

A model is correct with respect to a test case if the result of the execution is the result that was expected. A
model is correct if each of the test cases produces the expected results. The problem here is whether the

“expected” result really is the appropriate one. In the real world, we must assume that the oracle can be
incorrect on occasion.

Completeness is a measure of whether a necessary, or at least useful, element is missing from the model.
It is judged by determining if the entities in the model describe the information being modeled in sufficient
detail for the goals of the current portion of the system being developed. This judgement is based on the
model’s ability to represent the required situations and on the knowledge of experts. In an iterative
incremental process, completeness is considered relative to how mature the current increment is expected to
be. This criterion becomes more rigorous as the increment matures over successive iterations.

One factor drectly affecting the effectiveness of this criterion is the quality of the test coverage. The
model is judged complete if the results of executing the test cases can be adequately represented using only
the contents of the model. For example, a sequence diagram might be constructed to represent a scenario.
All of the objects needed for the sequence diagram (SD) must come from classes in the class dagram or it
will be judged incomplete. However, if only a few test cases are run, missing classes may escape detection.
In most cases, this type of testing is sufficiently high level that coverage of 100% is achievable and
desirable.

Consistency is a measure of whether there are contradictions among the various dagrams within the model
and between models produced during various phases. This may be partially judged by considering whether
the relationships among the entities in the model allow a concept to be represented in more than one way.
For example, each name should be unique. In an incremental approach the consistency is judged locally
until this increment is integrated with the larger system. The integration process must ensure that the new
piece does not introduce inconsistencies into the integrated model.

Consistency checking can determine whether there are any contradictions or conflicts present either internal
to a single diagram or between two dagrams. For example, one diagram, perhaps a sequence diagram,
might require a relationship between two classes while another diagram, such as the class diagram, shows
none. Inconsistencies will often initially appear as incorrect results in the context of one of the two
diagrams and correct results in the other. Inconsistencies are identified by careful evaluation of the results
of a simulated execution.

A Basic Process

Roles
There are several roles in this process. Several roles may be assigned to a single person; however, to
ensure objectivity there should be a clear distinction between the producers of the model under test (MUT)
and the testershspectors.

Test oracle - These personnel are the source of truth (or at least expected test results).
They define the expected system response for a specific input scenario. These will
usually be either domain experts or system engineers.

Test case writer - These personnel perform the analysis necessary to select test cases.
They also record the expected result for each test case as defined by the Oracle. These
people may be developers who did not create the model or system test personnel.

Symbolic executioner - These personnel provide the actual system response as defined
to this point in the software development process. These will typically be members of the
team developing the MUT since they understand the operation of the individual elements
of the model.

Moderator - The Moderator controls the session and advances the discussion through the
scenario.

Recorder - This person makes modfications to the reference models as the team agrees
upon changes. The Recorder also makes certain that these changes are taken into
consideration in the latter parts of the scenario. The Recorder also maintains a list of
issues to record questions that are not resolved during the testing session.

Drawer - This person constructs the SD as the scenario is executed. He/ she concentrates
on capturing all of the appropriate details such as returns from messages and state
changes. They may also annotate the SD with information between the message arrow
and the return arrow.

Steps
The model testing process is tightly coupled with the model development process [2]. We have found it
useful to iterate within the modeling process by periodcally switching from the modeling activity to the
testing activity. This provides quick feedback and often provides new information to be modeled.

The basic steps are the same as for any testing process:
Analyze - Much of the testing analysis has been done if the use case descriptions
contain sufficient information to allow them to be prioritized. We use a weighted
frequency profile to prioritize use cases for testing. The weight is based on how
critical the use is to the success of the system.

Construct - Write scenarios from the use cases. Each scenario must be made more
specific by providing exact values for attributes. These values are selected by fiist
establishing equivalence classes of values. Equivalence classes of values are all values
that will provide the same behavior in a given context. For example, {0,1,2,3} all
produce the same response from the statement x > -1 and x<4. Many of the test
parameters will be objects. Equivalence class translates to “objects that are in the same
state no matter how they got there.” Different use cases will have dfferent numbers of
test cases. We select from some states more frequently than others due to their
participation in high priority use cases.

Execute and Evaluate ~ The inspection process combines the application of a
checklist with the execution of test cases. The test session involves role-playing in
which the modelers and developers step through the model. The test session is a group
meeting since no individual developer will understand all of the classes in the model
and few models contain all the relevant information. The moderator selects one of the
scenarios and triggers the use. The developer/ owner of the class that begins the
scenario by describing the action taken by hidher object and describes its interaction
with other objects. For each interaction, the owner of the class receiving the message
describes their interaction with other objects and execution proceeds along each of
these links.

Summary of Our Experience
The Guided Inspection technique has been used in a variety of forms on a number of projects that differ in
size, complexity and domain. The technique has been used in the usual analysis and design contexts where
a development organization applied the technique to each model produced by an increment team. It has
also been used in limited engagements where a domain model or an architectural model was the only
artifact being evaluated. Our experience and that of knowledgeable clients is that this technique has greater
defect fiiding power than other widely used inspection techniques. The technique does require more effort
(the construction of test cases) than other inspection techniques but it is effort that would be expended
anyway.

The use of test cases brings a logical continuity to the inspection. Each step in the test case is a logical
consequence (rather than a syntactic necessity) of the previous steps. This guides the inspectors through
the material to be inspected in a path that allows them to judge the semantic validity of the model in

addition to evaluating its syntactic correctness. The result is that the defects that are found have the
potential of greater impact on the system than the syntactic bugs found in a sequential search.

Conclusion
We have presented an overview of guided inspection. This quality technique provides a means for
examining models and code in a semantically meaningful way rather than examining dsjoint pieces of
syntax. Detecting defects in the early analysis and design models makes a major contribution to the quality
of the application and to an on-time, on-budget delivery. Our presentation at the workshop will elaborate
on the steps in the basic process and illustrate the models being inspected.

References
1. John D. McGregor. The Fzpy Foot Look at Analysis and Design Models, Journal of Object-Oriented

Programming, July/August 1998.
2. John D. McGregor. Testing Models, The Requirements Model, Journal of Object-Oriented

Programming, June 1998.

A Process Definition for
Guided Inspection

John D. McGregor
Melissa L. Major
Software Architects

Goal: To identify defects in artifacts created
during the analysis and design phases of
software construction.

Steps in the Process

1.
2.

3.
4.
5 .
6.
7.
8.

Define the scope of the Guided Inspection
Identify the basis model(s) from which the
material being inspected was created
Assemble the GI team
Define a sampling plan and coverage criteria
Create test cases from the bases
Apply the checklist and tests to the material
Gather and analyze test results
Report and feedback

Detailed Step Descriptions

Define the scope of the Guided
Inspection
Inputs:

The project’s position in the life cycle.
The materials produced by the project (UML
models, plans, use cases).

outputs:
A specific set of diagrams and documents that
will be the basis for the evaluation.

Method:
Def i e the scope of the GI to be the set of
deliverables from a phase of the development
process. Use the development process
information to identify the deliverables that
will be produced by the phase of interest.

Example :
The project has just completed the domain
analysis phase. The development process
def ies the deliverable from this phase as a
UML model containing domain-level use
cases, static information such as class
diagrams and dynamic information such as
sequence and state diagrams. The GI will
evaluate this model.

Identify the basis model(s) from
which the material being inspected
was created
Inputs:

The scope of the GI.
The project’s position in the life cycle.

outputs:
The material from which the test cases will be
constructed (The Model Under Test - MUT)

Method:
Review the development process description
to determine the inputs to the current phase.
The basis model(s) should be listed as inputs
to the current phase.

Example :
The inputs to the domain analysis phase is the
“knowledge of experts familiar with the
domain”. These mental models are the basis
models for this GI.

Assemble the GI team
Inputs:

The scope of the GI.
Available personnel.

outputs:
A set of participants and their roles.

Method:
Assign persons to fill one of three categories
of roles: Administrative, Participant in creating
the model to be tested, Objective observer of
the model to be tested. Choose the objective
observers from the customers of the model to
be tested and the participants in the creation of
the basis model.

Example :
Since the model to be tested is a domain
analysis model and the basis model is the
mental models of the domain experts, the
objective observers can be selected from other
domain experts andor from application
analysts. The creation participants are
members of the domain modeling team. The
administrative personnel can perhaps come
from other interested parties or an office that
provides support for the conduct of GIs.

Define a sampling plan and
coverage criteria
Inputs:

The project’s quality plan.

outputs:
A plan for how test cases will be selected.
A description of what parts of the MUT will
be covered.

Method:
Identify important elements of this MUT.
Estimate the required effort to involve all of
these in the GI. If there are too many to cover,
use information such as the RISK section of
the use cases or the judgement of experts to
prioritize the elements.

Example :
In a domain model there are static and
dynamic models as well as use cases. At least
one test case should be created for each use
case. There should be sufficient test cases to
take every “major” entity through all of its
visible states.

Create test cases from the bases
Inputs:

The sampling plan.
MUT

outputs:
A set of test cases.

Method:
Obtain a scenario from the basis model.
Determine the pre-conddons and inputs that
are required to place the system in the correct
state and to begin the test. Present the scenario
to the “oracle” to determine the results
expected from the test scenario. Complete a
test case description for each test case.

Example :
A different domain expert than the one who
supported the model creation would be asked
to supply scenarios that correspond to uses of
the system. The experts also provide what
they would consider an acceptable response.

Apply the checklist and tests to the
material
Inputs:

Set of test cases.
Checklist for the type of model being
inspected.
MUT

outputs:
Set of test results.
Completed checklist.

Method:
Apply the test cases to the MUT using the
most specific technique available. For UML
models in a static environment, such as
Rational Rose, an interactive simulation
session in which the Creators play the roles of
the model elements is the best approach. If the
MUT is represented by an executable
prototype then the test cases are mapped onto
this system and executed. After the model has
been thoroughly examined, complete the
checklist.

Example :
The domain analysis model is a static UML
model. A simulation session is conducted with
the Observers feeding test cases to the
Creators. The Creators provide details of how
the test scenario would be processed through
the model. Sequence dagrams are used to
document the execution of each test case. Use
agreed upon symbols or colors to mark each
element that is touched by a test case.

Gather and analyze test results &
coverage
Inputs:

Test results in the form of sequence dagrams
and padfai l decisions.
The marked-up model.

outputs:
Statistics on percentage padfail .
Categorization of the results.
Defect catalogs and defect reports.
A judgement of the quality of the MUT and
the tests.

Method:
Begin by counting the number of test cases
that passed and how many have failed.
Compare this ratio to other GIs that have been
conducted in the organization. Compute the
percentage of each type of element that has
been used in executing the test cases. Use the
marked-up model as the source of this data.
Update the defect inventory with information
about the failures from this test session.

Categorize the failed test cases. This can often
be combined with the previous two tasks by
marking paper copies of the model. Follow
the sequence diagram for each failed test case
and mark each message, class and attribute
touched by a failed test case.

Example :
For the domain analysis model we should be
able to report that every use case was the
source of at least one test case, that every class
in the class diagram was used at least once.
Typically on the first pass, some significant
states will be missed. This should be noted in
the coverage analysis.

Report and feed back
Inputs:

Test results.
Coverage information.

outputs:
Information on what new tests should be
created.
Test report.

Method:
Follow the standard format for a test report in
your organization to document the test results
and the analyses of those results. If the stated
coverage goals are met then the process is
complete. If not, use that report to return to
step 5 and proceed through the steps to
improve the coverage level.

Roles in the Process

Administrator
The administrative tasks include running the GI
sessions, collecting and disseminating the
results, and aggregating metrics to measure the
quality of the review. In our example, personnel
from a central office could do the administrative
work.

Creator
The persons who created the MUT are the
creators. Depending upon the form that the
model takes, these people may “execute” the
symbolic model on the test cases or they may
assist in translating the test cases into a form that
can be executed with whatever representation of
the model is available. In our example the
modelers who created the domain model would
be the creator^".

0 bserver
Persons in this role create the test cases that are
used in the GI. In our example they would be
domain experts and preferably experts who were
not the source of the information used to create
the model initially.

Example :
For the domain analysis tests, some elements
were found to be missing from the model. The
failing tests might be executed again after the
model has been modified.

Reading Techniques for 00 Design Inspections

Guilherme H. Travassostz* Forrest Shulls Jeffrey Carvert Victor R. Basilitat
-v-

tExperimental Software ‘Computer Science and System ‘Fraunhofer Center - Maryland
Engineering Group Engineering Department 31 15 Ag/Life Sciences Surge Bldg.

Department of Computer Science COPPE (#296)
University of Maryland at College

A.V. Williams Building

USA

Federal University of Rio de Janeiro

Rio de Janeiro - RJ - 21 945-1 80

University of Maryland

USA
Park C.P. 6851 1 - llha do Fundso College Park, MD 20742

College Park, MD 20742 Brazil

ABSTRACT
Inspections can be used to identify defects in software artifacts. In this way, inspection
methods help to improve software quality, especially when used early in software
development. Inspections of software design may be especially crucial since design
defects (problems of correctness and completeness with respect to the requirements,
internal consistency, or other quality attributes) can directly affect the quality of, and
effort required for, the implementation. We have created a set of “reading techniques”
(so called because they help a reviewer to “read” a design artifact for the purpose of
finding relevant information) that gives specific and practical guidance for identifying
defects in Object-Oriented designs. Each reading technique in the family focuses the
reviewer on some aspect of the design, with the goal that an inspection team applying
the entire family should achieve a high degree of coverage of the design defects.
In this paper, we present an overview of this new set of reading techniques. We discuss
the reading process and how readers can use these techniques to detect defects in high
level object oriented design UML diagrams.

Keywords: 00 Design, Reading Techniques, Software Quality, and Software Inspection

1. Introduction

A software inspection aims to guarantee that a particular software artifact is complete, consistent,
unambiguous, and correct enough to effectively support further system development. For
instance, inspections have been used to improve the quality of a system’s design and code
[Fagan76]. Typically, inspections require individuals to review a particular artifact, then meet as
a team to discuss and record defects, which are then sent to the document’s author to be
corrected. Most publications concerning software inspections have concentrated on improving the
inspection meetings while assuming that individual reviewers are able to effectively detect
defects in software documents on their own (e.g. [Fagan86, Gilb931). However, empirical
evidence has questioned the importance of team meetings by showing that meetings do not
contribute to finding a significant number of new defects that were not already found by
individual reviewers [Votta93, Porter951.

“Software reading techniques” attempt to increase the effectiveness of inspections by providing
procedural guidelines that can be used by individual reviewers to examine (or “read”) a given
software artifact and identify defects. These techniques consist of a concrete procedure given to
a reader on what information in the document to look for. Another important component of the
techniques are the questions that explicitly ask the reader to think about the information just
uncovered in order to find defects. In previous work, we have developed families of reading
techniques [Basili96]. There is empirical evidence that software reading is a promising technique
for increasing the effectiveness of inspections on different types of software artifacts, not just
limited to source code [Porter95, Basili96, Basili96b, Fusaro97, Shu1198,Zhang98]. In this work,
we concentrate specifically on inspections, for the purpose of defect detection, of high-level
Object-Oriented (00) designs diagrams represented using UML [Fowller97]. (UML is a
notational approach that does not define how to organize development tasks.) Figure 1 organizes
the “problem space” to which reading techniques can be applied, and illustrates how reading
techniques for this task (known as Traceability-Based Reading) fit with previous work. Families
of reading techniques have been tailored to defect inspections of requirements (for requirements
expressed in English or SCR, a formal notation) and to usability inspections of user interfaces.

Reading
\ Technology

PROBLEM

SPACE

General Goal

Usability Specific Goal

Design Requirements Code User Document
(artifact)

Form
00 Diagrams SCR English Screen Shot Notation

1111111 /ll/L1l/lll~l-
SOLUTION Traceability Defect-ba/sed Perspective-based Usability-based Family

SPACE d\ A /h
Horizontal Vertical Omission Inconsistent Incorrect Expert Novice Error Technique

Developer Tester User Ambiguity

Figure 1 -Families of 00 Reading Techniques

Section 2 briefly describes object oriented design in terms of the information that is important to
be checked during software inspections. Section 3 introduces the reading techniques, showing the
hfferent types of defects such techniques are intended to identify and an outline of the whole set
of techniques. The fourth section discusses how the techniques can be used for inspecting 00
designs. Finally, some suggestions for future work are discussed in the conclusions.

2. Object Oriented Designs in UML

An 00 design is a set of diagrams concerned with the representation of real world concepts as a
collection of discrete objects that incorporate both data structure and behavior. Normally, high-
level design activities start after the software product requirements are captured. So, concepts
must be extracted from the requirements and described using the paradigm constructs. This

means that requirements and design documents are built at different times, using a different
viewpoint and abstraction level. When high-level design activities are finished, the documents,
basically a set of well-related diagrams, can be inspected to verify whether they are consistent
among themselves and if the requirements were correctly and completely captured. High-level
design activities deal with the problem description but do not consider the constraints regarding
it. That is, these activities are concerned with taking the functional requirements and mapping
them to a new notation or form, using the paradigm constructs to represent the system via design
diagrams instead of just a textual description. Such an approach allows developers to understand
the problem rather than to try to solve it.

Low-level design activities deal with the possible solutions for the problem; they depend on the
results from the high-level activities and nonfunctional requirements, and they serve as a model
for the code. Our interest is to define reading techniques that could be applied on high-level
design documents. We feel that reviews of high-level designs may be especially valuable since
they help to ensure that developers have adequately understood the problem before defining the
solution. Since low-level designs use the same basic diagram set as the high-level design, but
using more detail, reviews of this kind can help ensure that low-level design starts from a high-
quality base.

More specifically, the reading techniques investigated in this work are tailored to inspections of
documents using UML notation. UML diagrams capture the static and dynamic view of the real
world as described by the object-oriented constructs. We focused our reading techniques on the
following high-level design diagrams: class, interaction (sequence and collaboration), state
machine and package. Usually, these are the main UML diagrams that developers build for high-
level 00 design. They capture the static and dynamic views of the problem, and even allow the
teamwork to be organized, based on packaging information. The design content needs to be
compared against the requirements, which can likewise be described using a number of separate
diagrams to capture different aspects. In particular, we expect that there will be a textual
description of the functional requirements that may also describe certain behaviors using more
specialized representations such as use-cases [Jacobson951.

Thus, we identify the following as important sources of information for ensuring the quality of a
UML high level design:

A set of functional requirements that describes the concepts and services that are necessary in
the fiial system;
Use cases that describe important concepts of the system (which may eventually be
represented as objects, classes, or attributes) and the services it provides;
A class diagram (possibly divided into packages) that describes the classes of a system and
how they are associated;
A set of class descriptions that lists the classes of a system along with their attributes and
behaviors;
Sequence diagrams that describe the classes, objects, and possibly actors of a system and how
they collaborate to capture services of the system;
State diagrams that describe the internal states in which a particular object may exist, and the
possible transitions between those states.

3. Reading Techniques for high-level design

Requirements
Specification

Each reading technique can be thought of as a set of procedural guidelines that reviewers can
follow, step-by-step, to examine a set of diagrams and detect defects. The types of defects on
which our techniques are focused, as listed in Table 1, are based on earlier work with
requirements inspections. The defect taxonomy is important since it helps focus the kinds of
questions reviewers should answer during an inspection.

Requirements Use-Cases
Descriptions

Type of Defect
Omission

High Design

lncorrecf Facf

Class State Machine Interaction Class
Diagrams Descriptions Diagrams Diagrams

lnconsisfency

Ambiguity

Exfraneous
lnformafion

Description
One or more design diagrams that should contain some concept from
the general requirements or from the requirements document do not
contain a representation for that concept.
A design diagram contains a misrepresentation of a concept described
in the general requirements or requirements document.
A representation of a concept in one design diagram disagrees with a
representation of the same concept in either the same or another
design diagram.
A representation of a concept in the design is unclear, and could cause
a user of the document (developer, low-level designer, etc.) to
misinterpret or misunderstand the meaning of the concept.
The design includes information that, while perhaps true, does not
apply to this domain and should not be included in the design.

Table 1 - Types of software defects, and their specific definitions for 00 designs

We defined one reading technique for each pair or group of diagrams that could usefully be
compared against each other. For example, use cases needed to be compared to interaction
diagrams to detect whether the functionality described by the use case was captured and all the
concepts and expected behaviors regardmg this functionality were represented. The full set of our
reading techniques is defined as illustrated in Figure 2, which differentiates horizontal'
(comparisons of documents within a single lifecycle phase) from vertical2 (comparisons of
documents between phases) reading.

Consistency among documents is the most important feature here.
Traceability between the phases is the most important feature here.

1

2

Initial validation of these techniques was accomplished by means of a study [Shu1199,
Travassos991 that provided evidence for the feasibility of these techniques. Using the techniques
&d allow teams to detect defects, and in general subjects agreed that the techniques were helpful.
Also, the vertical techniques tended to find more defects of omitted and incorrect functionality,
while the horizontal techniques tended to find more defects of ambiguities and inconsistencies
between design documents, lending some credence to the idea that the distinction between
horizontal and vertical techniques is real and useful [Travassos99].

Further studies have been undertaken to improve the practical applicability of the techniques. As
a result of specific feedback from the feasibility study, we developed a second version of the
techniques and studied them using an observational approach (i.e., using experimental methods
suitable for understanding the process by which subjects apply the techniques) [Travassos99b].
The feasibility study had identified global issues for improvement, that is, issues that affected the
entire process, such as the amount of semantic versus syntactic checking. The observational
approach was necessary to understand what improvements might be necessary at the level of
individual steps, for example, whether subjects experience difficulties or misunderstandings
while applying the technique (and how these problems may be corrected), whether each step of
the technique contributes to achieving the overall goal, and whether the steps of the technique
should be reordered to better correspond to subjects’ own working styles. Detailed information
about the results and also an improved version of the techniques can be found in [Shu1199b].

4. Using 00 Reading Techniques for inspecting 00 Design

In this section we explore the application of the reading techniques in an inspection process.
While horizontal reading aims to identify whether all of the design artifacts are describing the
same system, vertical reading tries to verify whether those design artifacts represent the right
system, which is described by the requirements and use-cases. So, the goal is that when all the
techniques are used together, then all the quality issues in the design are covered. The
development team can use the whole set of the techniques, but if some design artifacts do not
exist, there is no impact on the design inspection process. A subset or reordering of the
techniques may also be chosen based on important attributes of the design to be reviewed. This is
particularly interesting when developers are dealing with specialized application domains. For
example, consider a system whose functionality is based mainly on its reaction to stimuli where
state machine diagrams are common. In this situation, it could be beneficial to use the reading
techniques that focus on state machine diagrams before using the reading techniques that focus
on the other design diagrams. For conventional systems, such as database systems, the semantic
model of the information and the flow of the transactions seem to be the important information.
Therefore, a subset of the techniques could be picked that focus on this information. In this
situation, first reading the class diagram against the sequence diagrams seems to be a good idea
then continuing with the rest of the techniques.

To organize the reading process, reading responsibilities can de distributed among the members
of the inspection team, reducing the reading effort per team member and improving the reading
process. In this way, each one of the readers can apply a reduced number of reading techniques,
or even deal with a reduced number of artifacts at the same time. After individual review, it is
important to organize a meeting in order to review each one of the individual defect lists and to
create a fiial list that reflected a group consensus of the defects in the documents. It is not
necessary to apply the techniques in a particular order, but it seems to be reasonable to apply first
horizontal reading for all existing design artifacts and then vertical reading, to ensure that a
consistent system description is checked against the requirements. In Figure 3 is an example of
how the techniques could be organized among a team of three reviewers.

Ts I I

looking for consistency

Reader 1

Reader 2

Meet as a team to discuss a
comprehensive defect list.
Each reader is an “expert” in
a different aspect

looking for traceability

Reader 3 Final list of all defects sent
to designer for repairing

Figure 3 - Organizing reading with 3 readers

To support these two types of reading (horizontal and vertical) we have introduced some new
terminology to describe the actions of the system. First, because the level of abstraction and
granularity of the information in the requirements and use-cases is different from the abstraction
and information in the design artifacts, the concept of systemfunctionality was broken down into
three complementary concepts (messages, services, and functionality). Messages are the very
lowest-level behaviors out of which system services and, in turn, functionalities are composed.
They represent the communication between objects that work together to implement system
behavior. Messages may be shown on sequence diagrams and must be associated with class
behaviors. Services are combinations of one or more messages and usually capture some basic
activity necessary to accomplish a functionality. They can be considered low-level actions
performed by the system. They are the “atomic units” out of which system functionalities are
composed. A service could be used as a part of one or more functionalities. We use the term
“functionality” to describe the behavior of the system from the user’s point of view, in other
words, the functionality that the user expects to be visible. A functionality is composed of one or
more services. Users do not typically consider services an end in themselves; rather, services are
the steps by which some larger goal or functionality is achieved.

A second important piece of terminology is that of conditions and constraints. A condition
describes what must be true for the functionality to be executed. A constraint must always be true
for system functionality. This information is important to readers comparing different diagrams

since it describes how the functionality must be implemented; this information is important to
maintain with the functionality it describes.

B.2 Reading 2 -- State diagrams x Class description
Goal: To verify that the classes are defined in a way that can capture the functionality specified by the
state diagrams.
Inputs to Process: A set of class descriptions that lists the classes of a system along with their attributes and
behaviors and a state diagram that describes the internal states in which an object may exist, and the possible
transitions between states.
For each state diagram, pelform the following steps:
1) Read the state diagram to understand the possible states of the object and the actions that trigger

transitions between them.
2) Find the class or class hierarchy, attributes, and behaviors on the class description that

correspond to the concepts on the state diagram.
3) Compare the class diagram to the state diagram to make sure that the class, as described,

can capture the appropriate functionality.
Using your semantic knowledge of this class and the behaviors it should encapsulate, are all states
described? If not, you have uncovered a defect of incorrect fact, that is, the class as described
cannot behave as it should.
Is there some unstarred state? Could you evaluate the importance of this state? Does it really
describe an essential object state? Is the state feasible considering all actions and constraints
surrounding it? If yes, probably something is missing on the class diagram and there is an
inconsistency between the diagrams. Otherwise, an extraneous fact should be reported.
Is there some unstarred event? If yes, fill in a defect record showing the inconsistency between the
class description and state diagram.
Is there some unstarred constraint? Is the constraint directly concerned with some object data? If
yes, fill in a defect record showing the information that has been omitted from the class
description.

Figure 4 - An excerpt of a Horizontal Reading

The main idea in applying horizontal reading is to understand whether all the high level design
artifacts are representing the same system. We must keep in mind that the artifacts should model
the same system information but from different perspectives. UML organizes the artifacts and
different types of information based on the type of system information they contain. There are
specific artifacts to capture essentially static information (basically, the structure assumed by the
domain’s objects while playing specific roles in the problem domain) and specific artifacts to
capture essentially dynamic information (basically, the consequences when objects are asked to
behave in order to accomplish system functionalities). These different views are useful and
together allow developers to understand what is going on with the objects and how they are
accomplishing the required functionalities in the context of the problem. However, these
differences among the diagrams make the inspection process a bit more complicated. For
instance, when comparing sequence diagrams against state machine diagrams two different
perspectives must be combined to interpret and identify possible defects. Each one of the
sequence diagrams is a represents some system objects and the messages exchanged between
them that implement some functionality required by the user while, on the other hand, the state
machine diagram is a picture of what happens to one object when it is influenced by the events
occurring in multiple sequence diagrams. Sequence diagrams show the specific messages
exchanged by objects, while state diagrams show how the system responds to events, which can
be messages, services, or functionality. Both diagrams must convey information about conditions

and constraints on the functionality. So, the horizontal reading techniques explore these types of
differences and help reduce the semantic gap between the documents. Figure 4 shows an excerpt
from a horizontal reading technique highlighting the concerns for each one of the reading steps
(some details are omitted).

B.7 Reading 7 -- State Diagrams x Requirements Description and Use-cases
Goal: To verify that the state diagrams describe appropriate states of objects and events that trigger
state changes as described by the requirements and use cases.
Inputs to process: The set of all state diagrams, each of which describes an object in the system. A set of
functional requirements that describes the concepts and services that are necessary in the fiial system and the set
of use cases that describe the important concepts of the system

For each state diagram, do the following steps:
1) Read the state diagram to basically understand the object it is modeling.
2) Read the requirements description to determine the possible states of the object, which states

are adjacent to each other, and events that cause the state changes.
3) Read the Use cases and determine the events that can cause state changes.
4) Read the state diagram to determine if the states described are consistent with the

requirements and if the transitions are consistent with the requirements and use cases.
Were you able to find all of the states?
If a state is missing, look to see if two or more states that you marked in the requirements were

combined into one state on the state diagram. If not, then you have found a defect of Omission. If so, then
does this combination make sense? If not, you have found a defect of Incorrect Fact.

Were there extra states in the state diagram?
Look to see if one state that you marked in the requirements has been split into two or more states in

the state diagram. If not, then you have found a defect of Extraneous. If so, does this split make sense? If
not, you have found a defect of Incorrect Fact.

Do all of the events on the adjacency matrix appear on the state diagram? If not, you have found a
defect of omission. Do events appear on the state diagram that are not on the adjacency matrix? If so,
you have found a defect of extraneous fact.

Did you find all of the constraints that are on the adjacency matrix? If not, then you have found a
defect of omission. Did you find a constraint on the state diagram that is not on the adjacency matrix? If
so, does the constraint make sense? If not then you have found a defect of extraneous fact.

Figure 5 - An excerpt of a Vertical Reading

To apply vertical reading readers should be aware of the differences between the two lifecycle
phases in which the documents were created and how the traceability between these two different
phases could be explored. The levels of abstraction and information representation between these
phases are quite different. Requirements and use cases should precisely describe the problem and
thus use a totally different representation than the design artifacts. Moreover, usually the entire
problem definition is presented using these two types of document. There is no separation of
concerns and no direct mapping from one phase (specification) to another (design). Vertical
reading techniques explore such ideas and provide some guidance to help the reader identify the
information s/he needs. For example, the requirements descriptions and use cases capture the
functionality of the entire system and in some cases the services, but not the messages. Designers
using these requirements and use cases decide about the messages based on the viewpoint
(abstraction) used to classify and organize the classes. Sequence diagrams are organized based on
messages that work together in some way to provide the services, which compose the required
functionality. Requirements and use cases describe constraints and conditions in general terms;

on a sequence diagram such information must be made explicit and associated with the
appropriate messages. So, vertical reading techniques explore these types of differences by
defining some guidelines for tracing the right information between these two lifecycle phases.
Figure 5 shows an excerpt from a vertical reading technique highlighting the concerns for each
one of the reading steps (some details are omitted).

A full description of the entire set of techniques, including the ones referred to here, can be found
in [Shu1199b], which is accessible via the web.

5. Ongoing Work

The Object Oriented reading techniques (OORTs) have been, and still are, evolving since their
first definition. New issues and improvements have been included based on the feedback of
readers and volunteers. Throughout this process, we have been trying to capture new features and
to understand whether the latest version of the reading techniques keeps its feasibility and
interest. We have found observational techniques useful, because they have allowed us to follow
the reading process as it occurred, rather than trying to interpret the readers’ post-hoc answers as
we have done in the past. Observing how readers normally try to read diagrams challenged many
of our assumptions about how our techniques were actually being applied.

However, two important questions remain open in this area. First, the role of domain knowledge
is not yet well understood for these two sets of readmg techniques, especially for horizontal
reading. Since horizontal reading is a largely syntactic check of consistency between two design
hagrams, it is not expected to require domain knowledge. Still, it has been observed that a reader
possessing some knowledge about the problem domain seemed to be more effective than a reader
who does not have the same level of knowledge. Some empirical investigation into exactly how
domain knowledge plays a role in this type of reading could help us better understand and thus
better support the process. The second question regards the level of automated support that
should be provided for such techniques. The observational studies have allowed us to understand
which steps of the techniques can feel especially repetitive and mechanical to the reader. So, the
clerical activities regarding the reading process using OORTs must be precisely defined and
identified. For this situation, further observational studies play an important role and they should
be executed aiming to collect suggestions on how to automate the clerical activities concerned
with OORTs.

Currently, the techniques are undergoing experimental evaluation, which is aimed at evolving
them. In each experiment we explore a different issue regarding the techniques in order to evolve
them or understand them at a deeper level. This series of experiments is an evolutionary process.
The feedback from the readers and the observation of the techniques usage are playing an
important role as we work towards a useful and feasible set of reading techniques for 00 design.
The results of these experiments will be published in future publications, which will be available
at http : //www . cs .umd. edu/proj ect s/So ftEng/ESEG .

Acknowledgements
This work was partially supported by UMIACS and by NSF grant CCR9706 15 1.
Dr. Travassos also recognizes the partial support from CAPES- Brazil.

References

[Basili96]

[Basili96b]

[Fagan761

[Fagan861

[Fowller97]

[Fus aro 971

[Gilb93]
[Jacobson951

[P orter9 51

Shu11981

S hull9 91

[Shu1199bl

[Travassos99]

[Travassos99b]

Fotta931

[Zhang9 81

V. R. Basili, S. Green, 0. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, M. V. Zelkowitz. The
Empirical Investigation of Perspective-Based Reading, Empirical Software Engineering Journal, I,

V. Basili, G. Caldiera, F. Lanubile, and F. Shull. Studies on readng techniques. In Proc. of the
Twenty-First Annual Software Engineering Workshop, SEL-96-002, pages 59-65, Greenbelt, MD,
December 1996.
M. E Fagan. "Design and Code Inspections to Reduce Errors in Program Development." IBM
Systems Journal, 15(3):182-211, 1976.
M. Fagan. "Advances in Software Inspections." IEEE Transactions on Software Engineering,

M. Fowller, K. Scott. UML Distilled: Applying the Standard Object Modeling Language, Addison-
Wesley, 1997.
P. Fusaro, F. Lanubile, and G. Visaggio. A replicated experiment to assess requirements
inspections techniques, Empirical Sofhvare Engineering Journal, v01.2, no. 1, pp.39-57, 1997.
T. Gilb, D. Graham. Software Inspection. Addison-Wesley, reading,MA, 1993.
I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard. Object-Oriented Software Engineering: A
Use Case Driven Approach, Addson-Wesley, revised printing, 1995.
A. Porter, L. Votta Jr., V. Basili. Comparing Detection Methods for Software Requirements
Inspections: A Replicated Experiment. IEEE Transactions on Software Engineering, 2 l(6): 563-
575, June 1995.
F. Shull. Developing Techniques for* Using Software Documents: A Series of Empirical Studies.
Ph.D. thesis, University of Maryland, College Park, December 1998.
F. Shull, G. Travassos, V. Basili. Towards Techniques for Improved 00 Design Inspections.
Workshop on Quantitative Approaches in Object-Oriented Software Engineering (in association
with the 13th European Conf. on Object-Oriented Programming), Lisbon, Portugal, 1999. On line
at http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/postscript/ecoop99.ps.
Forrest Shull, Guilherme H. Travassos, Jeffrey Carver, Victor R. Basili. Evolving a Set of
Techniques for 00 Inspections. Technical Report CS-TR-4070, UMIACS-TR-99-63, University
of Maryland, October 1999. http://www.cs.umd.edu/Dienst/UI/2.O/Describe/ncstrl.umcp/CS-TR-
4070
G. Travassos, F. Shull, M. Fredericks, V. Basili. Detecting Defects in Object-Oriented Designs:
Using Reading Techniques to Improve Software Quality. In the Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Denver,
Colorado, 1999.
Guilherme H. Travassos, Forrest Shull, Jeffiey Carver. Evolving a Process for Inspecting 00
Designs. XI11 Brazilian Symposium on Software Engineering: Workshop on Sofhvare Quality.
Florianopolis, Curitiba, Brazil, October 1999. On line at
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/ postscript/wqs99.ps.
L. G.Votta Jr. "Does Every Inspection Need a Meeting?" ACM SIGSOFT Software Engineering
Notes, 18(5): 107-1 14, December 1993.
Z. Zhang, V. Basili, and B. Shneiderman. An empirical study of perspective-based usability
inspection. Human Factors and Ergonomics Society Annual Meeting, Chicago, Oct. 1998.

133-164, 1996.

12(7): 744-751, July 1986.

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/postscript/ecoop99.ps
http://www.cs.umd.edu/Dienst/UI/2.O/Describe/ncstrl.umcp/CS-TR
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers

m
S
I I

v

i

>
ta
L s

I

b
8
b

c,
C

rc
0 c
C
3 e
t

4-J
3 a

L
0 3 4-J r \

U

3 s
0

v)g L

a 0 s a

L

zc

4-J u % m a

c u
3
v)
n u m a
0
L

4-J

I

I- E

; 1 E - / a . .
! I . .
! I

E

.v
/

v,

L

I

W

2k
5 8

5
Q)
.I * I I

U
I i

L

2
I

W
111

Ei m
UaJ m N e ‘E

cn cn
Q)
0

b
8
c,
C 0 w
b rc
0 c
C
3

LL
2

0 L
v)
S
0 e

S
m
cn
Q)

I=

n

I I
L

m
3 e
0
v)

5
Q)

>+. .I
v)
a, .- s CI .- > .-
CI
W W

E U c m
0 c
6 Q) L 3

8
b
I. aJ

0
v) r c

L
LL

II

$ II

II
II

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

- I

I 2 I

I

v)
S
0

Q

0
v)
Q) a
v)
v) m
0
a,

.I

CI

L
.I

-

v)
Q)
Q
>r
0
v) m
9

CI

.I

s
CI
.I

m
S
0 - m
a
Q)
9

0
0

. . .

I

b rc
0 c
C
3

LL
2

S

0
0

L

..
v) aJ
3 e
c c
W aJ
+r
m c
U tu aJ

I I

I I

L

0
0
c
+r

‘6
v)
v) aJ
W
0
a
c
0
+r
W aJ a
v) c
aJ c c

L

I I

I I

m .- S I

d
P L

0
N

a w
I

L

3

- .-
a m
a)
V

M
L a w
I

3

W

2k
5 8

I

b rc
0 c
C
3

LL
2

W

2k
5 8 v) aJ

E
aJ w
v) *
v)

E m
v)

w c
aJ
k e
I I

U

aJ c w
I.
0

w c tn
Q)
3

aJ

a aJ
L
v) w
W m
I.
w
L m

8
L

I I

I

r w
aJ
m L

E
0
W

b rc
0 c
C
3 e

m
L E

aJ -
0
W

Q, c
L
LL

S
0
W m
.-
CI

0 w
c 3

Q)
c
I I

0 c
v)
3
0
> m
0

I I

m w c
0
W

PL U

W .-
E m
S > n

aJ
L
3
v) c

S
0
N
I=

L W 0
I

E aJ w
v) *
v)

L c I I

W U

a) >
a)
1

W

2k
5 8

I

b rc
0 c
C
3 e L
LL

0

S
L
CI

6

v)
a)
U
3

.-

z

a)
L
CI

cn
S .-
Y

I

b rc
0 c
C
3

LL
2

CI
S

E
aJ >
0
L

H E
- m a
0

I/)
CI

E

m
W

0

H
H

I/)
I/) m
V
cn
S

-

L

r
m
W

0
V

I

b rc
0 c
C
3 e L
LL

U U c m c m
W

2k
5 8

0
I\
0
Tr
&

c
0
v)
v)

0

I I

I I

E

I.
0

I.
0
v)
Y

I

aJ
L

v)
Y b rc

0 c
C
3 e

w aJ
aJ
U

I.
L
LL

U m aJ
L r

8
3 e
I I c c
W

s
0
S

*
h

S
0 v
Q) s

c
0

aJ >

m
W .-
CI

5 >
X
m
S
0
N

CI

.-
I

m
a)

m
W .-
L
a)
W
-

.-
CI
S
a) m .-
0
CI

m
a)
a)
7

I

Session 3: Software Process Improvement

Christian Halvorsen, Norwegian University of Science and Technology

Stan Rifkin, Master Systems

Nancy Eickelman, NASA/IV&V

SEW Proceedings SEL-99-002

A Taxonomy of SPI Frameworks

Christian Printzell Halvorsen, Reidar Conradi
Norwegan University of Science and Technology (NTNU)

N-7491 Trondheim, Norwaj7

{ cph, conradi} @idi.ntnu.no
Phone: +47 73 59 34 44 Fax: +47 73 59 44 66

Abstract
There exist a number of different approaches, often called
fkamworh, supporting s .J t i .c process ihprovcmcnt (V!!.
Their differences and similarities has been the subject of
some debate. This paper discusses four different classes of
methods, which can be used to compare SPI frameworks.
One of these methods is a new taxonomy proposed in this
paper.

1. Introduction
Focus on sy%arc process hprovcmcnt (5Fq is growing. The
underlying assumption of SPI is that product quality is
influenced by the quality of the process used to produce it:

Quali~Proccsd 3 Qualit)(l-)rdzic4

This causal relation may seem trivial at first, but in reality
there are numerous variations in the approach to SPI.
These approaches are often called JF!!jkamworh and they
generally describe how organizations can assess current
process quality, as well as how they can improve it. Most
frameworks are rather comprehensive and differences in
content are evident in a number of aspects, e.g. focus,
goals, adaptability and so on. There are even subtle
differences in their interpretation of words like qziag$ and
proccsY.

However, the SPI framework differences may not be
apparent at first, and because the frameworks are so
comprehensive, it is costly to investigate them all. The
result is that the differences, which set one framework
apart from another, are not clear. Evidently, systematic
methods to compare the frameworks are needed. The
question is how this can be done gfiic~in& o@ichv<& and in
a way that is pass& to vahhtc.

1.1 Why Compare SPI Frameworks?
Comparing SPI frameworks can be rewarding from an
academic view. However, focus should not be on the
frameworks themselves, but on real improvements
resulting from their adoption. SPI framework comparisons
should therefore provide practical insight and guidance
when selecting which framework to employ in a software-
producing organization. It should be clear that no single
“right” comparison method exists for this purpose, and a
combination of methods may be necessary depending on
the context. The primary usability requirements to be
considered are:

Knoi&&whvcA The amount of detail in the
comparison should correspond to the knowledge-
level of the user.
Po& aJviciv - The comparison method can be general
or take the standpoint of a specific framework and
view others in terms of that.

How these requirements are satisfied depends on the
reason for comparing the SPI frameworks. An
organization iwkbozit prior SPI knowledge may wish to
institutionalize improvement work because of competitive
pressure or certification requirements - but which
framework is appropriate? On the other hand, an
organization iw2b an SPI framework in place may wish to
adopt more than one approach - but how can this be
done with the least amount of redundancy? In the latter
case working knowledge about one specific framework
exists, but knowledge about other approaches may not be
as thorough.

2. Comparison Methods
There is an increasing amount of literature comparing the
major SPI frameworks. Most is written in the last three
years and generally cover only a small number of
frameworks, e.g. [l] [2] [3].

From our review of other comparison work we have
recognized four main classes of comparison methods.
These will be described shortly in the following
subsections.

2. I Characteristics Comparison Method
A comparison method well suited for a general overview is
the use of cbaractcnhh The characteristics can be nominal,
ordinal or absolute and should preferably be objective,
measurable and comparable. However, the main point is
that they represent areas of interest for the SPI framework
investigation.

The frameworks are compared in terms of the defined
characteristics and the results can be presented in a tabular
format. This gives us a compact and high-level
comparison method with little details. Such details must be
collected elsewhere, e.g. using another comparison
method.

The taxonomy we propose in section 3 is based on the
characteristics comparison method.

2.2 Framework Mapping Comparison Method
Liizi.r/imk "r/apg is the process of creating a map from
statements or concepts of one framework to those of
another. This requires that the actual frameworks are
rather formalized, i.e. consist of a more or less defined set
of statements or requirements.

In the characteristics method the goal was to describe
important attributes of each SPI framework, i.e. areas of
interest. However, the purpose of mapping is to identify
overlaps and correlation between frameworks and create a
map of these. There can exist strong, weak or no
correlation as suggested by Tingey [3]. Furthermore, the
mapping can be done on either a high or a low level
depending on the amount of detail included. In either case,
it is more low-level than Characteristics and thus not very
useful for a general overview.

Framework mapping is especially useful when an
organization employs two or more different SPI
frameworks, as corresponding statements can be identified
and redundancy reduced. Thus the extra effort needed to
employ more than one framework is minimized.

2.3 Bilateral Comparison Method
In a hlaieya/ coqpanko'an two frameworks are compared
textually. The difference between this comparison method
and the two previous ones is its textual nature. A bilateral
comparison is often a summary or explanation of findings
from other the comparison methods.

The bilateral comparison can take on the point of view of
one framework and describe another in terms of it. This is
convenient for people with detailed knowledge of one
framework, because they can easily get insight into another
using familiar terms.

The amount of detail included in a bilateral comparison
can vary widely, depending on the purpose for which it is
written. Frequently the level of detail is somewhere in
between that of the characteristics and the mapping
approaches.

2.4 Needs Mapping Comparison Method
LVccd mqpkg is not a direct comparison between
frameworks. Instead, it considers organizational and
environmental needs that must be considered when
selecting which SPI framework to adopt. The
requirements imposed by such needs are often highly
demanding and can limit the choice of framework
severely. Nonetheless, they are of utmost importance and
must be considered carefully. Here are some examples:

Certification requirements, for example to IS0 9001,
often imposed on a subcontractor.

Top-level management requires that the chosen SPI
approach should be incorporated in a Total Quality
Management FQM) strategy.
Financial limitations.

There certainly exist other examples as well, and they can
vary substantially from organization to organization, or
depend on the business environment. Furthermore, the
needs may vary over time as the organization or
environment evolves .

3. The Proposed Taxonomy
We present a list of 25 characteristics, i.e. areas of interest,
relevant for discussing differences between SPI
frameworks. Because there are so many characteristics,
they have been grouped in 5 categories to enhance
comprehensibility and readability (cf. Figure 1).

3.1 General Category
This category describes general attributes or features of
SPI frameworks, frequently related to how they are
constructed or designed:

Gcag+i- on&k/pycad- Where did the framework
originate and where is it used today?
J&'ani$c on@ -The scientific background on which
the framework is based, e.g. another SPI framework.

Dcvchpmc'ani/Jiah@ - It is desirable to employ an
evolved and relatively stable framework. This is
achieved through experience feedback from real use
over a number of years.

I'@vh@ - A popular framework tends to receive
better support and further development than an
unpopular framework.

J@ilayc pcc$c - Some frameworks are especially
geared towards software engineering, others are more
general and must be adapted.

I+c~~@i~vc/&~~@hvc - Prescriptive frameworks
prescribe mandatory requirements/processes.
Descriptive frameworks describe a state or certain
expectations to be met without assigning specific
actions to be taken.
Ad@iah@- The degree of flexibility in the
framework, e.g. does it support tailoring and
customization for specific uses?

3.2 Process Category
The process category concerns characteristics that describe
how the SPI framework is used:

A J J ~ J J ~ ~ - Is an assessment scheme part of the

framework and if so, what is assessed?
AJJ~JJOT- The assessment can be carried out internally
by the organization itself or by an external group.
I-’rcess i~~pmvc/~cn.? mc.?hod- What kind of guidelines are
included to help implementation and institutionaliz-
ation of process improvement?
I/~p~ovc/~cn.?/n/~/a.?/on - Where in the organization is the
improvement work initiated, e.g. top-down or
bottom-up?
I/~pmvc/~cn.?~oc~s - The SPI activities regarded as the
most important by the framework.

Ana&s/i- .?cchn/+vcs - Does the framework utilize any
quantitative or qualitative analysis techniques, e.g.
statistical process control or questionnaires?

3.3 Organization Category
The characteristics in this category are directly related to
attributes of the organization and environment in which
the SPI framework is used

Ac.?o~s/~ohs/s.?a~choBc~s - Who are the primary people,
groups and organizations affected by the
improvement process and what roles do they hold in
this process?
Oganirahon sire - The framework may be more or less
suitable for an organization of a certain size, e.g.
depending on the required and available resources.
Cohcmcc - Is there a logical connection between
engineering factors and factors related to the business
or organization[l]? Coherence can exist internally in
the organization or externally between the
organization and its environment.

3.4 Quality Category
Characteristics in this category are related to the quality
dimension of the frameworks:

Qzia@pcqi%.?/vc - The concept of good quality
depends on whom you ask, e.g. management,
customers or employees.
I”pssion - Does the framework measure quality
progression in a flat, staged or continuous manner?
Caz.ualrch.?/on - How does the framework measure an
improvement in quality, i.e. what factors are assumed
to influence quality?

Coqpayahvc - Can the framework be used to compare
different organizational units, either internally or
externally? If so, which aspects are compared?

3.5 Result Category
The term rcmkis loosely used in this category, meaning the
outcome originating from the SPI framework adoption:

Goal- The primary objective or end result of using
the framework.
I’mcess a&#ac.?s - The artifacts created in addition to
the actual product as a result of adopting the
framework.

Ccn$%a.?/on - Does the framework include an
assessment leading to certification according to IS0
or a national standard body?

Cos.? OJiirphmcn.?ahon - Are there any estimates on how
much an adoption and implementation of the
framework will cost?

l/aLZahon -What kind of validation efforts have been
made to evaluate what improvements the framework
leads to? Such validation should exclude external
success factors, as they would have been achieved
even if the SPI framework was not adopted.

4. Conclusion
The goal of comparing SPI frameworks is to provide
practical insight and guidance when selecting which SPI
framework to adopt in a software-producing organization.
Such guidance is needed because of the multitude,
diversity and comprehensiveness of existing frameworks.
A natural question is whether those SPI efforts that report
only a limited degree of success, have adopted the wrong
frameworks.

When learning about SPI frameworks it may be necessary
to use a combination of comparison methods, preferably
starting on a high level. The most interesting frameworks
can then be chosen for further investigation, eliminating
the costly task to examine all of them.

We believe that our proposed taxonomy is a suitable
starting point for such investigations because it describes
the most important areas of interest. A major strength of
the taxonomy is its compactness, yet it retains the
descriptive power of more elaborate comparison methods.
However to comprehend the taxonomy fully, some
general SPI knowledge is required. There should be no
problem collecting material for further investigation, since
literature on the various frameworks is vast.

References
[l] Cattaneo F, Fuggetta A. and Sciuto D. I’wu.kg

Cohcmcc in Sy%aYc I-’rccss Asscss/zm.? andl/zpovcmcnk
Paper submitted to IEEE TSE, September 1998.

[2] Sorumgird Sivert, Verification of Process
Conformance in Empirical Studies of Software
Development. (Doctoral thesis 1997:14, The
Norwegian University of Science and Technology,
1997). 252 p.

[3] Tingey Michael O., Coqpan&IYO 9000, f V a h h
BaBn& andthe SEI CfWVj&sy%a~c: a &imcc and
schc.?/onp&. Upper Saddle River: Prentice-Hall, Inc.,
1997.

l-

z

-t

4 z

m

S

Discipline of Market Leaders
and other Accelerators to Measurement

Stan Rifkin
Master Systems Inc.

PO Box 8208
McLean, Virginia 22 106

7031883-2121 Fax: 7031790-0324
sr@Master-Systems.com

Abstract. We often hear that it is difficult to get software measurement into practice. At least one
important reason for this is that traditional software measurement is not aligned with the strategic
objectives of the organization. When software measurement is aligned with an organization's
market discipline then the implementation is accelerated.

One of the reasons it is difficult to get measurement implemented is that it is unaligned with
organizational objectives. Measurement is traditionally used to increase quality, increase
programmer productivity, and reduce costs. Oddly enough, these are not the highest priority
objectives for a number of organizations, so therefore traditional measurement is difficult to
implement in them.

The Discipline of Market Leadership is a survey of how 80 organizations out-achieved their
competitors. The authors found that focusing on one of three market areas was the answer:
operational excellence, customer intimacy, and product innovativeness. Operationally excellent
organizations have a "formula" for their service or product. Their menu of choices is small, limited,
and with that menu they deliver excellently. Standard examples are McDonalds and Federal
Express.

Customer intimate organizations seek quite a different market niche, namely a total solution.
Whatever the customer wants gets added to the menu. The menu is long and custom-made for each
engagement. Financial service institutions might call customer intimacy a way of getting a greater
share of the customer's wallet, there are few spending alternatives outside of the services offered:
bank and savings accounts, certificates of deposit, credit and debit cards, travel arrangements, etc.

Product innovative organizations pride themselves on maximizing the number of turns they get in
the market. They introduce many new products, selling innovation and features as opposed to, say,
price. Examples are Intel, 3M, Sony, and Bell Labs. They measure their success by the number of
new product introductions, the number of patents, andor the number of Nobel prizes.

The authors of The Discipline of Market Leaders are quick to point out that all organizations have
to have at least threshold characteristics of all three disciplines, but they have to focus on and excel
at only one. One example of lop-sidedness cited was IBM's legendary customer intimacy being
out-weighed by its inattention to price (that is, operational excellence), so competitors that were
not as strong in customer intimacy could gain in-roads to IBM customers with price.

Measurement of the type we are used to, the type espoused by the Software Engineering Institute
and Quantitative Software Management, applies almost exclusively to organizations wishing to be
operationally excellent. We typically have nothing to offer to customer intimate and product
innovative firms in our measurement or improvement methods.

Many software development organizations do not strive to become operationally excellent, so we
have left them in the lurch, though we tend to treat them as resisters and of bad character! In fact, it
is nothing more than a mismatch of goals. There is, for example, a large set of software
development organizations that strive for customer intimacy and essentially will do anything their

Rifkin 1 v 1.1

mailto:sr@Master-Systems.com

clients request. Those organizations get to know their clients very, very well, sometimes better than
the clients knows itself. An example of this might be a payroll service that has seen every variation
on payroll and knows more about payroll processing than any in-house payroll department could.
The most customer intimate payroll service offeror would take over their customers' payroll
departments!

What do you think Microsoft's market discipline is? I think it is product innovativeness. It touts its
new, glitzy features, not its up-time or reliability. It wants to owdearn its clients based on new
features, not offering software that is operationally excellent. In that context, the Software
Engineering Institute's Capability Maturity Model for Software is silent on product innovativeness
and customer intimacy: it applies only to organizations wanting to be operationally excellent. Same
for traditional measurement.

What are we missing in all of this? A more global view, one that listens to and responds to our
measurement customers. We need to see that the potential rejection of our measurement efforts is
NOT an indicator of bad character or resistance, but may be an appropriate response to measures
that do not fit the strategy. We need to joint problem-solve with our clients to develop new classes
of measures that simultaneously meet our high standards for objectiveness and their high standards
for relevance.

Examples. Let me relate several efforts in which I have participated:

1.

2.

3.

One brokerage house was not interested in software costs or quality, but rather what it called
time to market. In fact, it was not speed that was so important, but rather during the frantic
time that a deal (such as an initial public offering) was being put together Information
Technology was being asked to respond quickly. The response had to be quick enough so that
the broker could earn as much as possible by offering as many services as possible. It was a
question of wallet share, which in turn is a customer intimate approach. The brokerage wanted
the customer to maximize its spending with the brokerage so it had to have the longest menu of
services possible. We settled on a measure of the percentage of the total deal that did not go to
the brokerage. UT'S job, then was to offer a realistic plan for continual reduction of that
(missed wallet share) figure.
One computer-oriented defense contractor said it wanted project measures, but when pressed it
was clear that projects were not managed - and therefore not measured - in the traditional way.
The government client wanted a provider that would do what it requested, not study the request
and offer alternatives or push-back. Cost, quality, and duration were not important to the client,
only that it got what it wanted in reasonable terms. This, too, is a customer-intimate approach,
one that makes the menu of services just as long as the customer requests are. Naturally, the
provider has to deliver the systems within a threshold value of cost, quality, and duration, but
there were already many other providers that performed better in terms of cost, quality, and
duration, but were rated too low in customer responsiveness to be considered! In fact, the
client changed its mind often, rendering previous work inapplicable. This would cause rework
that would traditionally be held against the provider. Traditional project-oriented measurement
was irrelevant in this setting. We recommended several measures: of the total spent by the cus-
tomer how much went elsewhere (to be minimized); time spent in adversarial settings (to be
minimized); time spent with the customer understanding its business (to be maximized); and
number of people on our staff with credentials like our client's (to be maximized).
A computer services firm had been the prime contractor for a long time for a government
client. The computer services firm provided all of the computer programming and operations
for a particular type of payment that the government entity made to deserving applicants. The
contract was up for renewal and the incumbent wanted to propose a set of measures going for-
ward that would indicate its operational excellence. The usual suspects were offered in
discussions with the provider (now bidder), but those measures did not seem to resonate, even
though they were "reasonable." It turns out that the government organization was feeling
behind the times in terms of technology and really wanted a new, modern UT provider, not a
better, cheaper, faster provider of old technology. In fact, there was no business driver for the

Rifkin 2 v 1.1

desire for more modern technology, only a (vague) belief that such technology would reap
financial benefits to the government in terms of lower costs and greater flexibility. The
measures we settled on were:

plan vs. actual implementation of a set of new technology introductions,
hours spent training the government client on the principles of that new technology,
reliability measures directly related to the government organization's business, for
example, cost of government rework due to provider payment errors, idle government
worker hours due to system downtime, and government time spent in meetings or on the
phone with deserving applicants due to provider service failures.

These measures were instead of other, traditional measures, such as percentage system
availability (e.g., 99.9% available), data entry error rates (0.1%), and a threshold number of
ABENDs per day, none of which related to the government mission or daily reality.

New model emerging. There is a new model of systems development emerging. It is consistent
with the lessons of The Discipline of Market Leaders. The place it is first seen is a new breed of
systems developers: fixed price, fixed duration efforts. Their model is something like:

Totality of Systems Development

Tech n i cal Development

The totality of the systems development effort is internally divided into two phases: obtaining
customer requirements and developing a system to meet those requirements. Obtaining
requirements is an open-ended effort, difficult to estimate, and bid on a time and materials basis.
Once the requirements are obtained, they are more or less thrown over a wall to a heads-down
software factory. There the requirements are quickly transformed into an operational system.

Changes to the requirements are not allowed during the factory period. It isn't that changes are not
requested, but rather they are queued and made candidates for the next release. A small percentage
of high-priority changes can be accepted and passed on to the factory, but usually it is a single digit
percentage, by contract agreement.

Because the factory can work with its head down, it is fast and good. It has learned how to be,
perhaps by emulating/applying the best practices promulgated by the NASA-CSC-University of
Maryland Software Engineering Laboratory, the SEI, Cleanroom, and others.

If the requirements need to change dramatically before the system is developed, then the whole
arrangement changes back to what we traditionally have today: gather requirements, try to freeze
(or at least chill) them, develop a system to meet the requirements, in the midst of that then change
requirements again and try to absorb the newest changes, etc.

Rifkin 3 v 1.1

The neweT* business model achieves several objectives:
1. People attracted to dealing with customers face-to-face do that and only that.
2. People attracted to dealing with the technical development of systems do that and only that.
3. People who like to span those boundaries get to do that, too, because they are part of both the

requirements elicitation and the technical systems development so that, in fact, the
requirements are not thrown over a wall.

Technology improvement and change management are different in the two areas. Technical
development is the stuff we are used to seeing, but the technology of customer intimacy used in
requirements elicitation is new, both in the technical aspects and in how change is introduced into a
on-going working relationship between technology solution providers and their clients.

I see ever more organizations offering this newer model. What would be the downside to the
client? Anyway, the measurement implication is that a wholly different set of measures would
apply to the customer intimate activity than to the technical one; the technical one is more or less a
solved problem. Now we as a profession need to turn to the other two disciplines of market leaders
and offer them something!

Acknowledgements. I learned most of this by working with John Title of Computer Sciences
Corporation. The measurement leader who made me ask myself many of these questions is David
Card. Many SEI SEPG conference keynote speakerdcheerleaders who claim that those who resist
have bad character have irritated me into writing this down. Their failure to ask (and answer)
"Why?" stimulated me.

References

Michael Treacy and Fred Wiersma. (1995). The Discipline of Market Leaders: Choose Your
Customers, Narrow Your Focus, Dominate Your Market. Addison-Wesley.

Fred Wiersema. (1996). Customer Intimacy: Pick Your Partners, Shape Your Culture, Win
Together. Knowledge Exchange.

* I hesitate to call it "new" because Winston Royce, that doyen of our profession, described it in a keynote address at
the National Security Industrial Association Seventh Annual National Joint Conference, April 23, 1991, at Tyson's
Corner. His talk was entitled, "A completely new software life cycle."

Rifkin 4 v 1.1

0
0)
b
(y3
0
b

+ r

E
0
0

2
Q)

v)
>r cn
c1

S
.I

L
Q)

v) m
c1

5 L
r

r
N

N

00
(y3
0
b

+ r

E" t
0
C

w m

E
t
0

Q)
Q

I.
t

0 0 0

3
S

E
*
t
0 s cn
A
II

m
h
h -
t
0
IA
U
U

0

Q) >
m >
0
S
S

cn cn
Q)
0
0

w- *

w-

t
n
0

0

h
h

0

h

0 0
z E
0

h
h cn
Q)
N
0

E s
0
u)
U
U

0

3
S

E
*
t
0 s cn
A
II

m
h
h -
t
0
IA
U
U

0

Q) >
m >
0
S
S

cn cn
Q)
0
0

w- *

w-

t
n
0

Q) U c
a
I

- c
I

)r
Q Q)

t
m

Q) c Q)
cd c
tn

-
Q
X
Q) ..
Q)
Q

w m

w w

Q)
t 0

I I
I
Q) tn tn C S 0 cd 0 w m

I a 0
I

m
m Q

0
Q)
tn

0 tn

?
w .

w tn
Q)
0
C
cd c
0
t

I
Q) tn t
3

U
U

0 - m)r m
tn

tn
cd
Q)

0 3
0
)r
0 w

0
III
3

Q) Q)
t c

I E t
Q)

0
tn
3

E
I

0 .. m 0
I.

tn
w m C

w m
t

I
0 I

cd c S
0 w 0 0

0 0 0

h
h * s m .. m a * C m

a
m a
0 =
C m
a
m m
C

*
t

E
x cn

w-

C * t
h
h

a 0 .. C
C 0

II
t a
Q m

L1 Q
cn

w-

cn s .- m
t h

h cn a cn cn a
0

m
f
0
s
m a
Q

t

22
t

U
U ..
F

0
t m

0
(3

Q

E w-
t a m
I w- a

3 E
m
E a

cn
C

*
-

v)
a m

0
0 0 0 0 0

m m
Q)
t

S
s w-

* Q) s *
I.

m o 0 Q) > 0 cn U Q) Q)

Q) >
Q)

e8
t S s 0 Q m

S
w- *

S m *
t

s h
h

Q)
Q

Q Q)
t Q)

Q) m
Q)

3
0
Q

x
x- E

w-

u
U

Q)
Q) cn

x cn m
cn
)r m
3

w w

t
Q)
Q
E
E
2

S m
cn *I-I c n c n s- o

m
Q)

t h
h

U

a cn U
U

0 0 0 0 0

Software Measurement Frameworks t o Assess
the Value of Independent Verification &

Va I id a t io n

Dr. Nancy Eickelmann
NASA IV&V Facility

Software Research Laboratory
100 University Drive

Fairmont, West Virginia 26554
+13043678444

http://research.iw.nasa.gov/-ike
"CY. Ei ckehnannm ivv .Ila sa. gov

Abstract

Software IV&V, as practiced by the NASA IV&V Facility, is a well-
defined, proven, systems engineering discipline designed to reduce risk in
major software systems development. However, we currently have no
proven methodology for estimating resource requirements for IV&V based
on sound financial criteria. The quantification of a cost structure associated
with IV&V and the resulting benefits are essential to make objective
decisions concerning the allocation of resources to IV&V activities. The
development of ROI metrics for NASA IV&V would provide key
information to make rational budgetary decisions that impact safety and
mission critical aspects of all NASA software systems. To measure IV&V
benefits and costs we must identify relevant measures and provide target
ranges for those measures that may be used to evaluate whether or not the
goals are achieved and to what degree. This requires a measurement
strategy for software IV&V in the NASA context. This paper presents the
NASA IV&V Balanced Scorecard strategic measurement framework and
discusses its role in providing a minimal and usable core metrics set.

1 Introduction
The Balanced Scorecard, as applied in industry and government, is approached from
two very disparate viewpoints. Industry is very aware of the importance of financial
performance measures in managing an organization. Publicly held companies must
be responsive to market and shareholder demands. Market share, share price,
dividend growth, and other significant results-oriented financial measures have been
used historically to evaluate an organization. Government organizations must
respond to regulatory and legislative acts. One such legislative act is the
Government Performance and Results Act (GPRA) passed by Congress and signed
by the President in 1993. This act provides a new tool to improve the efficiency of
all Federal agencies.

http://research.iw.nasa.gov/-ike

The goals of GPRA are to: . Improve Federal program management, effectiveness, and public
accountability . Improve congressional decision making on where to commit the Nation’s
financial and human resources . Improve citizen confidence in government performance

A specific difference between government and industry is explicit in the
government’s focus on cost reduction as compared to industry’s focus on revenue
generation and profitability. We have customized our BSC to accommodate these
differences thus providing a framework to evaluate the overall performance of the
organization through a linked hierarchy of specific performance drivers and
outcome measures [7].

1.1 Structure of the Paper
Section 2 provides an overview of the Balanced Scorecard and motivations for its
use. We then excerpt portions of our scorecard to exemplify our measurement
framework, the application of cause effect graphing and the setting of strategic
measurement targets in Section 3. Section 4 discusses specific BSC measurement
issues and lesson learned. Section 5 concludes our paper and discusses current
directions of our work.

2 Balanced Scorecard

The Balanced Scorecard (BSC) Framework provides the necessary structure to
evaluate quantitative and qualitative information with respect to the organization’s
strategic vision and goals. There are two categories of measures used in the BSC the
leading indicators or performance drivers and the lagging indicators or outcome
measures. The performance drivers or leading indicators enable the organization to
quantitatively track whether or not the organization is achieving short-term
operational improvements. The outcome measures or lagging indicators provide
objective evidence of whether strategic objectives are achieved and to what degree.
The two measures must be used in conjunction with one another to link
measurement throughout the organization thus giving visibility into the
organizations progress in achieving strategic goals through process improvement
~141.

The development of a core set of metrics for implementing the Balanced Scorecard
is the most difficult aspect of the approach. Developing metrics that create the
necessary linkages of the operational directives with the strategic mission prove to
be fundamentally difficult as it is typical to view organizational performance in
terms of outcomes or results rather than focus on metrics that address performance
drivers that provide feedback concerning day-to-day organizational progress.

The BSC is not the organizational strategy but rather a measurement paradigm to
provide operational and tactical feedback. The organizational strategic vision and
goals are the foundation upon which the framework is constructed and are taken
from public domain documents. The strategic plan contains the vision, goals,
mission and values for the organization. The Government Performance and Results

Act, GPRA requires all federal agencies to establish strategic plans and measure
their performance in achieving their missions. The vision and goals are stated below.

Vision: To be world-class creators and facilitators of innovative, intelligent,
high performance, reliable informational technologies that enable NASA
missions.

Goals: To become an international leading force in the field of software
engineering for improving safety, reliability, quality, cost and performance
of software systems; and to become a national Center of Excellence (COE)
in systems and software independent verification and validation.

3 BSC Architecture

The BSC architecture was intended to provide a framework for industry and for-
profit organizations. The framework facilitates translating the strategic plan into
concrete operational terms that can be communicated throughout the organization
and measured to evaluate its day-to-day viability. The three principles of building a
balanced scorecard that is linked through a measurement framework to the
organizational strategy include;

(1) defining the cause and effect relationships,
(2) defining the outcome measures and performance drivers,
(3) linking the scorecard to the financial outcome measures [5] .

The initial steps of BSC engage in the construction of a set of hypotheses
concerning cause and effect relationships among objectives for all four perspectives
of the balanced scorecard. The measurement system makes these relationships
explicit. Therefore, they can be used to assess and evaluate the validity of the BSC
hypotheses. The questions asked in each category of the four perspectives provide a
segue into the cause effect diagramming activity. It is this activity that exposes the
value chain associated with specific IV&V activities.

3.1 Defining the Cause-Effect Relationships

IV&V is conducted using different approaches and methods depending the goals of
the IV&V team. To define causal relationships we must evaluate the measurement
based on a context sensitive method:

1) Identify the underlying IV&V process relative to the development process.
2) Identify the activities (methods, models and tools) by inputs and outputs and
entry and exit criteria.
3) For activities categorized as information management IT, measure the value of
information to decrease uncertainty, mitigate risk, improve quality.. .
4) For analysis activities we define the value for the outputs such as problem reports
at a given time in the lifecycle and by criticality.

We begin by formulating hypotheses concerning the value of IV&V in a given
context of the Space Shuttle IV&V activities. The hypotheses are based on inferred
or known relationships documented in prior studies reviewed under the first phase of
our ROI project. We state the initial hypotheses as constructed, however their
review and evaluation are an ongoing activity.

The hypotheses developed are based on several assumptions that are based on
current understanding of the interaction of the IV&V process and shuttle
development process. The Space Shuttle is considered a product-line as defined by
the SEI as well as the general research community. The characteristics that make the
shuttle a product line process include the systematic reuse of a set of core
architectural and component based assets that are reused in each incremental release.
This core commonality is extended to support each operational increment (01) and
represents a negotiated and limited degree of domain variability.

Hypothesis 1: The benefits of IV&V contributions are realized as domain
engineering and applications engineering benefits. This means some
benefits should accrue to the core structure of shuttle software and be an
ongoing contribution in its maintenance and extensibility.

Hypothesis 2: The benefits of the application engineering accrue almost
entirely to the developer. That is the defect reduction that occurs in
development is enabled in part by IV&V contributions to domain
engineering.

Hypothesis 3: The benefits of product-line engineering in the shuttle are
significant in reducing testing costs while maintaining high levels of testing
quality. The degree of test suite and test environment reuse is exceptionally
high and results in a significant cost savings.

Hypothesis 4: This is fundamentally a unique system that is developed using
sophisticated reuse. This requires us to view the system as generating shuttle
“builds” from an investment of core assets. The benefits are primarily
derived in the reusability and rapid extensibility of the shuttle code.

Hypothesis 5: Adherence to an architecture enables system safety, reliability
and quality standards to be imposed and verified for the core assets of the
shuttle. Acceptable degrees of variability to extend functionality are
approved by a team of architects and systems engineers that includes the
IV&V team.

We map our hypothesis to a set of objectives concerning the value of IV&V and the
necessary and sufficient factors to creating value for the organization in terms of the
strategic vision and goals. The BSC is segmented into four categories of objectives
customer, financial, internal business processes and learning and growth segments.
The objectives for the four segments are the following: . customer segment objectives correspond with the high level goals of mission

success through high quality, reliability and safety. . financial segment objectives focus on cost reduction, efficient asset utilization
and high ROI values of IT investments. . internal process objectives relate to specific software and systems engineering
approaches such as product-line development paradigms, CPI and QIP efforts,
and test technologies and best practices as defined for IV&V. . learning and growth objectives include technological infrastructure for
distributed development, workforce training programs, skills assessment
program, and ISO-9000 process structure.

Mission Functional Requirements

C us toniers
(Internal

'j Quality Objecthe
Reliability Objective

0 bj ectives Measures Targets Initiatives

No Losses # Severity 1 &2 Remove < FRR Formal Methods

Safety

External)
Reduce Risk

Manage Risk

cost

N&V Practice Metrics Program
Methods

Tools

CPI - QIP

Active
Safety

Team - Models 4 IS09000 t
Open Communication
Channels & Reporting

IFA's No Severity 1 Risk

Fault tolerance Performance Risk Mitigation
Management

I Skills training

Skilled Workf- program

Figure 1.1 Influence diagram of IV&V BSC objectives.

The objectives are used in the selection of a minimum set of required metrics to
measure day-to-day performance as well as longer term outcome or results metrics.
This aspect of the framework focuses on development of leading and lagging
indicators. An example customer focused objective would be the improvement in
overall safety due to IV&V activities. A leading indicator for this objective could be
the number of identified potential hazardous states resulting from a safety impact
analysis or a tracking of the hazard rate during development. A result measure or
lagging indicator could be the number of in flight anomalies (IFA) that are
documented. The leading and lagging indicators must be assigned desired or
normative values. These values become targets or target ranges for the metrics
collected. Finally, the initiatives that have been sponsored to achieve the objective is
identified and reevaluated with respect to the quantitative and qualitative evidence
of success relative to the target values (see table 1.1 .)

Table 1.1 Customer focus metrics definition.

The relationships among the customer objectives of interest are significant as they
are not independent of one another and therefore must be analyzed based on their
degree of covariance and interaction. The relationships are diagrammed Fig. 1.3 and
depict the current accepted understanding. Safety requires that unsafe states cannot
be entered from any point of function of the system. It is possible for the systems to
function reliably that is without failure and still enter unsafe states of operation. A
system can be completely correct and defect free and still enter unsafe states. There
are many documented examples of these properties in the literature and many
devoted specifically to documenting the complexity of software safety issues. The
safety of a system is a result of its safe operation in a specific context or
environment. We provide definitions of safety, reliability, quality and cost as
defined for the customer objectives of the BSC.

Safety is defined as freedom from accidents or losses. This is an absolute
statement, safety is more practically viewed as a continuum from no accidents
or losses to acceptable levels of risk of loss.
Reliability is defined in terms of the probabilistic or statistical behavior, that is
the probability that the software will operate as expected over a specified period
of time.
Quality is defined in terms of correctness and number of defects. Correctness is
an absolute quality, it is also a mathematical property that establishes the
equivalence between the software and its specification.
Cost is more complex than it appears, direct or absorption costing may be
applied and alters what costs are included and therefore what costs may be
reduced. The focus of the paper does not rely on the differences inherent to
these two approaches and therefore defers discussion of this topic.

The NASA IV&V facility must document the increase in software and systems
safety, reliability and quality that are attributable to IV&V technologies. This
requires that the contribution that is made towards meeting required targets through
the application of IV&V activities must be quantified. This requires that each aspect
be evaluated relative to some objective target. The value add of IV&V is measured
as the sum of overall reduction of distance from the target. This provides a measure
of overall impact to mission success. The relative reduction of “Euclidean Distance”
from the safety target of no losses attributable to IV&V specifically is documented
and integrated into the overall model that sums the total reduction of distance from
the three targets of safety, reliability and quality. There are many measures that can
be collected to evaluate the value added of IV&V for software and system safety;
this is only one approach. The measurement of the contribution of IV&V in
improving safety, reliability and quality while reducing cost is discussed in the
following sections.

{Correctness

Fig. 1.3 Relationships among customer themes of mission success through safety, reliability, and
quality at reduced costs.

4 BSC Issues and Lesson Learned

The four strategic mission goals of importance to our customers are safety,
reliability, quality and cost. This section discusses those aspects in terms of
measurement as is defined in the balanced scorecard.

SAFETY The contribution of IV&V to shuttle safety is difficult to measure directly.
It is therefore necessary to make assumptions concerning those factors that would
impact safety and to what degree. It is assumed that a reduction in the probability of
failure is a contribution to increased safety. A reduction of the number of In Flight
Anomalies IFAs of a severe nature due to IV&V identification and removal is a
contribution. An independent evaluation of potential failure modes that results in
identifying previously unidentified hazards is a contribution.

RELIABILITY The contribution of IV&V to shuttle reliability is more directly
attributable to the specific verification activities that are applied during the Shuttle
software development process towards defect management. Research investigating
the ramifications of testing strategies for reliability provides quantification of
benefits relative to specific IV&V activities. A minimization of estimated residual
faults is provided according to the sequence of testing strategies and the duration of
those test executions. For example the number of defects detected by applying
functional, decision, data flow and mutation test methods in sequence. The CPU
execution time or the number of test cases can measure test effort. As the test effort
increases defects detected can be optimized through applying more optimistic or
pessimistic test strategies. The resulting increase in reliability is measured by
increased MTTF or improved failure intensity profiles and is quantified as a
reduction in the distance from the reliability targets of subsystems undergoing
IV&V.

QUALITY The contribution of IV&V to shuttle quality is measured as a reduction
of defect density trends through process improvement paradigms such as traversing
the CMM stages from levels 2,3,4 to level 5. The intuition behind this model is that
the measurable impact of process improvement is in the reduction of the cost of
rework Specific examples of applying this concept are documented in the literature
and state substantial savings associated with rework avoidance. Raytheon Systems
Corporation reported cost savings of $15.8 million for 15 projects over a four-year
period. Raytheon documents an ROI of 7:l based on $4.48 million return for
$580,000 invested. Hughes Aircraft reported cost savings of $9.2 million over a
three-year period. Hughes documents an ROI of 4.5: 1 based on $2 million return on
$400,000 invested. The Aircraft Software Division at Tinker Air Force Base
reported an ROI of 6.35: 1 based on a return of $2.9 million for $462,100 invested.
In addition, the rework cost avoidance of detecting defects of severity 1; severity 2
and severity 3 can be quantified relative to phase of detection and level of severity.
The reduction of defect density is measured as a reduction of distance from the
overall quality objective measured in defect density according to severity.

COST In the early 1990’s the software engineering community adapted ROI to
measure the costs and benefits of SEI/CMM process improvement efforts. Published
examples of how ROI for CMM based process improvements are measured and
interpreted provide guidelines for the basic proposed ROI model [7,13]. The process

community quantified process and product improvement using the following four
major development-cost structures drawn from Crosby’s work as published in
“Quality is Free” and “Quality Without Tears” [3,4]. Crosby’s work is referenced by
Capers Jones as the seminal work in this area and has been used as the basis for cost
structuring by DoD contractors such as Raytheon Systems [17]. The cost categories
include :

1. nonconformance rework costs (such as fixing code defects or design
documentation),

2. performance costs associated with doing it right the first time (such as
developing the design or generating the code),

3. appraisal costs associated with testing the product to determine if its faulty, and
4. prevention costs incurred trying to prevent faults from degrading the product.

Industry has applied these four cost categories to measuring ROI for software
process improvement by using rework costs avoided (nonconformance costs
avoided) as the numerator and appraisal and prevention costs directly related to
process improvement efforts for the denominator [7,18]. The intuition behind this
model is that the measurable impact of process improvement is in the reduction of
the cost of rework [3,4,10,11].

A measurement framework is necessary to bridge the gap between strategic
measures of improved reliability, safety, and quality at reduced cost and operational
measures of optimization of resource allocations applicable to daily activities to
achieve these goals. The BSC provides a means of measuring the efficiency of
resource allocations for the operational processes of software and systems
verification and validation activities that must then be linked to the high level goals
of mission success at reduced cost. In applying the BSC we have learned many
lessons of value concerning our strategic planning as it relates to the activities
conducted to accomplish daily operational goals. First, we have found that a
customer focus of the strategic themes provides the necessary linkages in the BSC to
measure our leading and lagging indicators successfully. We have also learned that
the CMM and ISO-9000 initiatives are split across the core process tier and the
infrastructure tier of the BSC hierarchy. These two findings are essential in applying
the BSC to a government or not-for-profit organization such as the NASA IV&V
Facility.

5 Future Directions

The primary focus of learning and growth measures for IV&V specifically is the
information technologies (IT) used to obtain, retrieve, disseminate and store key
information products [6]. The IV&V Facility is located in West Virginia and yet
services all the NASA Centers from the Pacific to Atlantic coasts. To support this
distributed context. Communications technologies such as VITS, VOTS and internet
tools such as web-based data collection repositories are required. Specific measures
to quantify performance, cost, and quality for IT infrastructure to support IV&V
technologies must be further evaluated to provide meaningful target ranges for IT
performance metrics.

In addition, further investigation into the measurement of core processes as defined
under IS0 is required. The ISO-9126 Standard, documents 6 high-level software
qualities including functionality, reliability, usability, efficiency, maintainability and
portability. These high-level qualities are mapped to 24 sub-characteristics. Metrics
are proposed to measure the high-level software qualities relative to the sub-
characteristics. This IS0 standard could provide the necessary metrics to measure
operational processes under the process aspect of the BSC, relative to the
application of product line reuse, and map them to the high-level goals. Of particular
interest in this standard is the definition of reusability as the combination of
maintainability and portability. It will be of interest to analyze the appropriateness
of the standard in measuring reuse for the shuttle [9]. Specifically, reuse across a
vertical product line that incorporates domain engineering, architecture-based reuse,
and reusable test technologies.

REFERENCES
[11 Basili, V. Rombach, D., “The TAME Project: Towards Improvement Oriented
Software Environments,” IEEE Trans. Software Engineering, 1988.
[2] Boehm, B., Software Engineering Economics, Englewood Cliffs, Prentice Hall,
1981.
[3] Crosby, P. B., Quality is Free. McGraw Hill, 1979.
[4] Crosby, P. B., Quality without Tears. McGraw Hill, 1985.
[5] Eickelmann, Nancy S., “Combining Software Measurement Frameworks to
Assess the Operational and Strategic Value of Process Improvement in a
Government 0rganization”European Software Process Improvement Conference:
Learn from the past - experience the future. In the Proceedings of the EuroSPI ’99
at the Pori School of Technology and Economics, Pori, Finland, Oct. 25-27, 1999.
[6] Eickelmann, Nancy S., ‘I Strategic and Software Measurement Frameworks to
Assess the Value of Information Technology”, In the Proceedings of FESMA ’99
European Software Measurement Conference, Amsterdam, Netherlands. Oct. 4-8,
1999.
[7] Eickelmann, Nancy S., “A Comparative Analysis of BSC as Applied in
Government and Industry Organizations.” Information Technology Balanced
Scorecard Symposium, Antwerpen, Belgium, March 15-16, 1999.
[SI Eickelmann, Nancy S., “Measuring and Evaluating the Software Test Process.”
European Software Measurement Conference, FESMA ‘98, Antwerp, Belgium, May

[9] Eickelmann, Nancy S., Product-Line Development Metrics. GSAW ‘98, El
Segundo, California, February 25,1998.
Hetzel, B., Making Software Measurement Work. John Wiley and Sons, 1993.
[101 Humphrey, W., Managing the Software Process. Addison-Wesley 1989.
[111 Humphrey, W., Snyder, T., and Willis, R., “Software Process Improvement at
Hughes Aircraft,” IEEE Software, July 199 1.
[12] Jenner, M., Software Quality Management and IS0 9000. John Wiley and
Sons, 1995.
[13] Jones, C., Applied Software Measurement. McGraw Hill, 1991.
[141 Kaplan, R. and Norton, D., The Balanced Scorecard. Harvard Business School
Press, 1996.
[151 McGrath, R. and MacMillan, I., “Discovery-Driven Planning” Harvard
Business Review, July-August 1995.

6-8, 1998.

[16] Radatz, J. W., “Analysis of IV&V Data” Rome Air Development Center

[17] Saiedian, H. and Kuzara, R., “SEI Capability Maturity Model’s Impact on
Contractors” IEEE Computer, January 1995.
[181 Violino, B., “Measuring Value: Return on Investment” Information Week,
Issue 637, June 30, 1997.

ROME C# F30602-80-C-0115, 1981.

L A I

E E;
0 - > L +

cn
a

o a k

\

CI
I

v)

z

a
a

J
E z

L
v)

>r >
Ca z

2

I

\
0
E

\
0
E

z

a L
n

2
0
E
2
Q
0
0

&

m
CI
1 a
1
CI

0

I

111 > .Y
d b
2:

W
m
0 u
W u
LI
1
0
VI

cn
c,
0
3
Td
0

a,
&
8 s
G
0

%
0

d

cn

c,

3 cn
cn
a, cn cn
6
a, >
0
a,

0
d
6

-+
c,

3

3 -+
>
0
&
cn
a, cn cn
a,
0
0
&
k
4
k
U

0

d

Y 4 n m " a , m u

h

6

c, e
s
3

cn

c, -+
4

6

a,
k
c,

-+
4

2 c,

a, z
3 -+ >

>
a,
a,

0
a,

0
c!
bJ0
3
0

-+
c,

3

3 c,

z
3
a,

,r!
d
0
0
cn
3 -+
>
0
&
0

..
0

a,
c,

8
k
4
k
3
-8 e
k
a, a
%
0
cn
a, >
0
a,

0

-+
c,

3
k

2
6
0

e n cn

E a,

a,
8 s
G
0

%
0
d
0

0

0
0
Td
d
6
d
0

0
a,

cn

-+
c,

E

-+
c,

c,

3 - it
a,
6

0
6

F4
n

c,

c, -+
4 -+

4

Td
d
6

d
a,
E

3
8

a,
bJ0

. ,
a,
0
d
2
d

a,

4 ;i
G
0 cn
a, B g
E &
O n

h
v -3

z
$
E

4
6
0
-4

8
2
c, cn

Td
d
6

E
k
a,
c,

0
c!

k
0 a
a,
k
cn
a,
k
3 cn
6

cn

8
-4 3
c,
d
3
0
0
0
6
Td
d
6
6
4

-4 z
-4 3
F4

Td

bJ0
d a , n .d w j

h
v -3

z
$
E

bb

c,
Fn
0 u
0

4
cd > a

a
k

2
$I:

a
k
0

a

a

0
Ccl

2
0
0 a
9 >

4 >
H

a0
F1
-4

Tb
cd . .

m
cd
4

s
0

a
4

4
cd
F1
0

cd
F1
a
F1

-I+
c,

k

c,

4 z
-4
a0 a
c, E
U cn

I
X * I * I

I
4 c z
E
0

I * * X
I)

* Ix * X
I

L
a, c
5

J
Lo
Lo
0
0
0
3 cn

E
cd LI
ba
0

c
0 .+
Lo
Lo .+ c

\

0 0 I

+ h I
E
cd
0
b

Lo +
0
0
b

0
0

LI
0

3
-a

0
+ +

3 cn

z
$
E

> a >
4
4 z

H

cn

tn

I

1
Cn I .s

1L
+
2

E
@
2
.3

rl

Cn +
a,
ba

b
2

.3 +
cd
0 $ 3

a a

VJ
c,
G

ri a
1

W

c,

h
v
-3
3 -3

0
cd

!&

>
ca >
H

>

z
$
E

4
4
cn

cn
CIJ

1-1

z
c, ca
FG
c,

cf=
‘k

G aJ

ca
cn

I) cn
M
0

0

CIJ >
ca

c,

-4
c,

24
0 ca
k

> a >
H

cn
CIJ
-4
c,
.d

>
0 ca
-4
c,

4 ca c
0

ca
CIJ
e,
0

-4
c,

k

-4 >
1-1

I) cn
M
0

z

L A I

E E;
0 - > L +

z
$
E

cn
a

.

iL c
m
a, cn
a,

2

of

c .-
2
0
a3
Lo
64
cn m
3
J

a,
5
a

h
v -3

m 73
a, -r
0
Q LL

0
L

+
2 z a3
0 2

b
c9
0

*
64 . .

. Y

$
E

c9
64

in
0 . . 0

_.

cn
cn
0
0

+ c
0
cn cn
.-
.-

64 c-
64
I I
c
0
U
U

3
I

m

.I

L

CI

0

> E
a>
3 c

- + +

c/)

64 c-
64
I I

m 2

ba > cn cn
a>
a>
0

- a>

3 c

- + +

c/) e m co
a3

L m c
c
c/)

0 0
c n c n c n c n
0 0
11

+ +
t j
k

3

l!
c n l o 0 0 0 - e 0

k > H
z
$
E

z

pa
E
h
a2
a2
E
pa
E w
E
0
c, a u
a

.d

.d

.d

.d
m

2

a2 a
h
0

Ccl

pa
E
h
a2
a2
E
pa
E w
E

c,

.d

.d

.d

i
0
n

-6 a>
H +

0 2

z

cn cn
CIJ
0
0
7 cn
c
0
-4 cn cn
-4 c
k
0

Ccl

cn :

:
CIJ

FG
H
k

0

7

c, cn

I)

c,
7

h cn

7
CI

0 e,

u .d

x
A

'k'k x x
Q J Q J

Q J Q J
2 2
s , s ,

3
QJ

h h h h

x x x x
Q J Q J Q J Q J u u u u x x x x
Q J Q J Q J Q J
s , s , s , s ,

u
2 u

I) cn
M

I

H
a,
k
c, 3

c, 2
cn

E
0
L)

I
c,

cn
a,
bJ0
a,
c,
6
k c, cn

-4

b
Td
a, cn
0 a
0

%
0

0
6

U

&
c,

-4 B

.

m c
cd
a
c,
cd
k

c
0

0
a
a
m
VI a
a

-4
c,

c,

c,

c,

>
cd
a
k

cd
c
0
m a
VI
cd
D

-4
c,

I

h w a
c,
cd
k
c,
VI

VI a
0

c,

c,

;rl
-4

0
a a
VI
cd
&I
0

m c
cd
c
0

7
0
a
X a
&I
0
a
c,
cd
k

a s
c
0
m a
VI
cd
D

-4
c,

c,

c,
cd s
7 a
7
0

VI a
cd
s

c,
c,

c,

c,

c,

c,

-2
VI
c,
7 a c
-4

c,
VI a

7

c,
I

&I
VI
VI a
0
0

c
0

0
a
a
m
k
0
a
k
7

cd
&I

m a >
k a
VI
D
0
c
cd
c

-4
c,

c,

I
-4

-4

VI
c,
I

7
VI a
k

c,

;rl a c a
D
U

H m
a m a c
ocd

cd
c
-4

VI
k
0
c,
0
cd
&I

a
VI a s
VI a
cd
a
k

c a s

c,

c,

I

c,
c,
H

h
v -3

z
$
E

PL
PL

>
-
I

2

LL
W
k
k

I

a >
cd
cd

-4
c,

k

z
0
0
cd
w c
7
c
0

-4
VI

-4
VI
VI a
k z
0
0
a
7
m a s
0
VI

VI a
m c
cd

I

c,

c,

VI
VI
h
cd c
cd

-4

I

II

a
k

c,
VI
0
0
a
U

a
I z
0
0
a s
c,

VI
cd
I
I a
3
VI
cd
h w

3

e, z
a
VI
7
0

m a
m c a
X a
c a
a
D
VI
cd s
cd s
a
k
7
c,
0
7
k
c,
VI

c,

c,

c,

c,

h
v -3

z
$
E

c,
VI a
a
D
cd

cd >
cd
h

cd
0
k a

c,

I

I
-4

I
I

-4

E
E
0
0
VI a
VI
7
cd s
c a
VI
0 s
0
VI

a

c,

c,

-4

I z
cd
X a
0
;rl
-4

0
a a
VI

4
0

c
0

cd
c

-4
c,

c,

w c
cd
7

-4
c,

I
*'c,
ad) 24

0
k

3 :
cd > a

a
E
3 k

0
&I

a
0

0
cd
k a
c a
k
k
7
0
c

-4
c,

c,

0
0
m
c
0
-4
c,

cd
k crc
c
0

cd
7
cd >

W

-4
c,

I

cd
6
bd) h

v -3

a
VI
m c h w

0 cd
k o a a z w c

-4

- 'v1
6 0

I

0 c $
E 'a LL

W
m z
m a
c c,

d)
k
5

c,
VI

k
7
0
m c
cd

a E

E
0
c,

6
d)
c,

2 c,

-4
k
0

I
c,
0
a
3
0
m c
cd
V I V I
0 0
0 0

II

c,c,

VI a
w
0

m crc
W

'0 c s e e
I

4 0 a 0 c,

0
ml

VI a c
0
?
VI
k a a
cd

m

m
a >
cd
VI
VI
k

VI
k
7
0 s
ml
m

0

cd
7 m a
VI

H

c,
I

7
0 s I) m
H

m h
v -3

H

Q) 4 c
0
m
a
c, :
0
7
c,

6
c!
Lc) z
0 a

VI
cd
0

s
c c, z

$
E s

c
0

c, II U
VI a c cd c, k a a s

c,
-4

a
w
cd
k a >
cd

c
cd VI a

VI
cd
0

VI a
0
0
cv)

0

c,

c,

3 c
c 0
0
I)
0
I)

c,

;rl a c a h
k

VI
7
m c
H

0

c,
VI

t-”
0

I)
0 0

k
0

m
m

2
d) +
0

*H
I

0 mi
- 0

a
a
a

Td
d)
I

h
v -3 a

d) h
I I

rd
ir! +

d) a ‘ u d) a z
$
E

a

c,
d o
d)+

z d
\ 6% a,

c, a* ss h
v -3

z

v
S

v1
1

h'aj

0 0
- 0
v 1 -

vi
0
d) a
v1
6

c,

4

2
0 .

0 4 .

c Td -4

c,

VI c , a , El
0
VI
VI
a,
k

-4

E"
0
0
a,
7
5
a,

4G
0
VI

VI
a,

I

c,

c,

a, -4
** -
k c d ' 0 c

G
VI
VI
a, c
a, >

h
c,

0
a,
c,
c,
VI
a,

a,
k

c,

s c
0
VI
a,
G
b

.-I , ,
c,
0 X

a,
c
0
0
a,
0

-e,

I

h

6
GI
GI
a,

VI
a,
c,

c,

VI
a,

GI
c,

n 0

X
a,
c
0
0

c,

c,

h
v
-3
3 -3

0
cd

!&

c,
VI
a, V I "

u*

0
a,

GI
**
I

z

a,
5
7
0 c
c
0

I

0 4

0 4

c, z
0
7
cd
VI
VI a
0
0
k a

c,

U

a,
k
cd

cd
G

c
0

0 c
7

GI

cd
0
c
0 c
cd
0

-e,

-e,

VI

**
-e,

I

**

5 c
cd
VI
VI
a,
0
0
k a

u
El

E"

E"

a,
k
3'
VI
cd

u
VI
a,
u
0

c, c
E" a
0
a, >
a,
5
VI
a,

I

c,

c,
0

c
0

V I * c , 7
. . 0-

0.D c
c c
cd
a
VI
a,

el+

I

c,

c,
0

c,
VI
a,

a,
cd
7
cd >
a,
0

5

c,

c,

I

c,

c,
VI
a,

a,
k

c,

s c
0
VI
a,
G
b

0 0
cda, a x
L

I

0 c
G

I
Ul
0
0
S
0
I=

I

E
0
I

2
3
I

k

k
0

h w
0
0 c
c!
0
a
VI

J

I

c,

h

c
0

0
e,
w c
a
0
5
cd
c!

c,
VI

-4
c,

c,
-4

3
5
a
cd
0
0
VI
VI
cd
VI
VI
0
0
a
c!

c,

-4

c,

e
0

a
c!

c!
c,

c,

-2
5 a
cd
0
0
VI
VI
cd
a
k
cd
n
VI

c,

-4

I

0
0

w c
VI a
5 a

c,

-4
c,

c,

c,

2
0
7
cd

cd

c,

k

I
-4

E
-4
VI

a
VI
7 a
k

5 a
cd a
0

c
cd
5 c
cd
h w
0
0 c
c!
0
a

c,

-4

-4
c,

I

c,

0
0

G

E

0
c,

-4

c!
VI

w
5
cd
cd a

-4

k

. .
3
0
5 c
-4

3
h w
0
0 c
c!
0
a
a
c!

I

c,

c,

c,

k s
VI
c,

;rl a c a
D

3c
k a c c
7

2
e-
\

c,
e,
cn

2
0
\

c,
e,
cn
a
VI
cd
c!
0
k
7 a
c c, : a
7 m

W

-4

0

VI
VI
h
cd c
cd

-4

I

5 c
cd

c c, : a
0
a I > 3c A \

0 0

VI
a
VI
VI
cd
a
D
cd
VI
7 a
k
bl
0
w c
>
c!
0
k
cd
5 c
cd
a
0 c
cd c a
c

c,

I

-4

-4

c,

-4 s
0

VI a
cd
5 a
7
a
k
cd

c,

3
G
0 cn
0

h
v -3

z
$
E

S
0
I=

I E
2
0
I

I

3

U
G
b

U

a
a

h w
0
0 c
c!
0
a
VI

I

c,

h

c
0

0
e,
w c
a
0
5
cd
c!

c,
VI

-4
c,

c,
-4

3
5 a
cd
0
0
VI
VI
cd
VI

c,

-4

c,

;rl a c a
D
a
c! e
0

a
c!

c!
c,

c,

-2
5 a
cd
0
0
VI
VI
cd
a
k
cd
n
VI

c,

-4

I

0
0

w c
VI a
5 a

c,

-4
c,

c,

c, :
0
7
cd

cd

c,

k

I
-4

E
-4
VI
k
0
I

a
VI
7 a
k

5 a
cd a
0

c
cd
5 c
cd
h w
0
0 c
c!
0
a

c,

-4

-4
c,

I

c,

0
0

G

E

0
c,

-4

c!
VI

w
5
cd
cd a

-4

k

. .
3
0
5 c
-4

3
h w
0
0 c
c!
0
a
a
c!

I

c,

c,

c,

k s
VI
c,

;rl a c a
D

VI w c
>
cd
VI

-4

:
-4
c,
I a c c
0
VI
k a a
c,
VI

t-”
0

c
0

7
0
a
X a
5 c
cd
c
0
-4
c,
cd
k a c a w
a
VI
cd
0

VI a
5 a

-4
c,

c,

c,

c,

2
2
0
c,

0

VI w c
>
cd
VI
a
7
5 a
c!
0
VI

VI

-4

I

c,

t-”
0

%
a
VI
7 a
k

a
5
I

z
c w
VI a
-4

a
0

“E
a
VI
7 a
k

c
0

cd
0

-4
c,

;rl
-4

0 a a
VI

VI
c,

t-”
0

a

h
v -3

z
$
E

a, E

X

II

II

>
e, z
VI
VI
c,

0
I)
I
I

3 crc

0
0
cv)
u3
b

ml
64

n

II

>
e, z

E -2
3 - i

k -+ >
cd
m

L O
0 0

L
3
0 s
0
0
0
c\1
69

\

I

a *
cd
L
L
0
9
cd
Ll

h
v -3

z

8
0

a *
cd
L
*
G
3
0
0
m -+
n

0
>

k
a, a
0
0

Td
a,
Y

.6

0
s
E
c,

k
c,
MI

a,
MI s
E

‘k,

0 x

a, x
T3 x e
a,
e
L
T3
0

s

‘k, -

z
$
E

0

H ..
r\

IA
H

H

0

0 0 0

z

Session 4: Space Software

SEW Proceedings

Lou Blazy, NASNAmesIWV

Marti Szczur, NASNGoddard

Richard Doyle, JPL

SEL-99-002

E
0
m
m

E
c, a
Ccl
cd
m
a
k
cd
3
G
0
m
a
m
cd

0 c
E
H

I

k
0

Ccl
m
a
-4

w
0

' " -4
U

k h , c d n
ocd
cdw
L L
a 0

a
cd
k

3

bo-

0 *
w
E
h

a-

G
a
k
cd

m c

z
2 Ccl

0 a

a a
k L

3 3
c c m m

w w
a a

Ccl
0

W c

m

-4

a

h
U
-4 +
cd
3
m
a
cd
k

3
G
0
m
a >
0
k

F
H

a

w c

-4

w c
h a

0 m c,
Ccl
0 a

d

k a
0 -4

c, c a c -4

W

cd 0
m r A ..

c, a s m
0 c,

a 0

a >
0 0 3 k

F 2 H

W

a a

\

a
2

2

*
0 a *
0
k

E a *
Fn
h
m
m
0
c;l
0

I

I %"

h
v
-3
3 -3

P
cd

a
-3 3

b

2
v

L
a
id
LI)

v v

h
v
-3
3 -3

P
cd

a

-a
a
0
G
cd s
G

-3
3

b

-3 g w
v

h
v -3

3 -3

P
cd

c u . .
3 s - . do?

0

cd
a0

-3
3

0
A I
0

0

w c d m
C k c n

I l l

m
a

W

+

2
c
0

& I I I
0
v1
a

a

' 0
E
z
0 a

a
k
cd

c
0
m
.v

a a

a
a- -

E
cd
k
w
0
k
L
z
0
k
cd a
Fn

2

c
0
-4
U

id
0
.d

Ccl c
0 k

-4

a -4
c, > cd

cdw e a

>
0 > a

+

2
c,

I I & I I
0
v1
a

.

E
cd
k

Session 5: Using the Experience Factory

Frank McGarry, Computer Sciences Corporation

Ross Jeffery, University of New South Wales

Carolyn Seaman, University of Maryland

SEW Proceedings SEL-99-002

Attaining Level 5 in CMM Process Maturity

Frank McGarry
Bill Decker
Joe Haskell
Amy Parra

Abstract

In November 1998 the CSC SEAS Center achieved the rating of CMM Level 5 and
became the sixth organization in the world to have ever attained that goal. The
Capability Maturity Model (CMM) (Reference 1) is a worldwide recognized benchmark
of process maturity for software organizations and is used to assess the quality of an
organization’s software process. During the period covered by this study, the SEAS
Center comprised approximately 850 personnel supporting systems engineering, software
development, and analysis for NASNGSFC. During the years of continually improving
the processes toward the goal of attaining the level 5 rating, detailed information was
recorded, tracked and analyzed so that subsequent efforts by other C SC organizations
could benefit from the experiences of SEAS. This paper is a direct result of the
collection and analysis of that process experience data.

This paper begins with a brief overview of the SEAS organization that emphasizes the
aggressive process improvement approach that has been in place since 1994. The paper
will discuss the coordination of improvement initiatives, the role of goals and industry
benchmarks, the organizational strategy and the use of key documents in measuring
improvements. Additionally, the investment and benefits of an improvement program are
discussed. Finally, based on the SEAS experience, the paper presents seven key factors
that are the recommendations for any software organization undertaking an aggressive
process improvement program.

1

Section 1 Background

CSC is a major software integration and services provider with over 50,000 employees in
offices worldwide. The Systems, Engineering, and Analysis Support (SEAS) Center is
part of the Federal Sector and comprises approximately 850 persons supporting the
National Aeronautics and Space Administration (NASA) at the Goddard Space Flight
Center (GSFC) in the disciplines of systems engineering, development, maintenance, and
analysis (Figure 1 - 1).

CSC has supported NASA in the GSFC environment since the 1970's. Staffing at the
Center has varied from 700 to 1700 over the last 10 years. The SEAS Center is organized
as a program with central offices supporting program management (PMO), process
engineering (PEO), quality assurance (QAO), and program control (PCO). Software
configuration management is typically a project responsibility and subcontracting for
product development is very rare. The number of projects within the program varies but
is typically about 20. Approximately 50% of the organization is directly involved in the
software development or maintenance activity.

Figure 1-1 SEAS Center Within CSC

Because of the growing importance of establishing process maturity within software
intensive organizations, the SEAS Center initiated an aggressive process improvement
program in 1995. A process improvement plan with specific goals was written to guide
the initiative. Of the goals, four were product goals with objective measures

2

(productivity, quality, predictability, cycle time), and another goal specified compliance
with standard industry benchmarks.

The processes used to support the work on SEAS have always been regarded (by the CSC
staff) as being good processes although an early external evaluation of the processes
produced a Level 1 CMM rating in 199 1. Despite this early discouraging result, the
Center continues to view benchmark evaluations as an important activity supporting
process improvement efforts (Figure 1-2).

After some success with internal process audits and CMM self-assessments, SEAS
Center adopted the use of evaluations against industry benchmarks conducted by
independent consultants. The 1995 process improvement plan included goals for both
CMM and IS0 9001 (hereafter referred to as ISO) evaluations.

The results of benchmarking activities are summarized in Table 1-1. In 1998, the SEAS
Center became the sixth organization in the world to be rated at CMM Level 5 and the
first organization to be both CMM Level 5 and IS0 registered.

-@- SCE

IS0 9001 registration audit (R), surveillance audits (S)

+ Software process self assessments (SPA) and software
process audits

Figure 1-2 SEAS Center Benchmarking History

3

*Additional IS0 assessments held in 11198. 5198. and 11198

Table 1 - 1 Summary of Benchmarking Activities

4

Section 2 Approach

As discussed in Section 1, SEAS had an extensive legacy of process development and
improvement at the time that it achieved CMM Level 5 in 1998. SEAS process
development work during the late 1980s and early 1990s consisted primarily of
refinements of the SEAS System Development Methodology (SSDM) and its supporting
standards and procedures (S&Ps). Such refinements were recommended by process users
and approved by senior management. This bottom-up approach worked reasonably well
and resulted in the establishment, deployment and use of SSDM and approximately 100
S&PS.

Between 1989 and 1994,508 proposed changes to SSDM were submitted by process
users; of these, 379 were implemented in whole or in part. Unfortunately, most concerned
relatively minor adjustments to existing processes. SEAS management noted three major
flaws in this process improvement strategy: (1) a formal “learning through
experimentation” process was not being used, (2) establishment and measurement of goal
achievement was weak, and (3) SSDM and its associated S&Ps were becoming obsolete
since new approaches and methods were not being adequately integrated. A new
approach was needed.

During the early 1990’s the Quality Improvement Paradigm (QIP) (Reference 2) was
being used in the SEAS Software Engineering Laboratory (SEL). (The SEL, Reference 3,
is a joint venture involving CSC, NASA and the University of Maryland.) The QIP,
shown in Figure 2-1, established a framework for improving SEAS by treating projects as
experiments, packaging results, and making such results available to all SEAS projects.
The QIP eliminated the process improvement flaws noted above and was accepted by
SEAS management as a solid foundation upon which to build the SEAS improvement
program. Since 1994 the QIP has served as the model for process improvement for the
SEAS Center.

The SEAS adoption of the QIP as its improvement model focused attention on improving
key activities such as communication, coordination, establishment of goals, measurement
of change, and experience sharing. Thus, attention was redirected from refinement of
existing processes to making SEAS a learning organization based on the experiences of
its projects. Adoption of the QIP radically changed how improvement was addressed by
the organization. Some of these changes are briefly discussed below.

5

Project
Learning

Figure 2- 1 Quality Improvement Paradigm (QIP)

I . SEAS-Level Coordination of Projects’ Process Improvement Initiatives.

The QIP is based upon the assumption that a Program-level group is aware of project-
level experiments, provides guidance to projects, and makes successes and failures
known to other projects within the Program. For SEAS, responsibility for this type of
coordination was assigned to the PEO. Use of “shepherds” and weekly ‘Process
Deployment Team Meetings’ as described below directly resulted from adoption of the
QIP.

Shepherds are typically Process Engineers or Quality Assurance personnel who are
aware of activities and project experiments throughout the organization. The
shepherds are assigned to work directly with a project to guide process
implementation and avoidance of problems experienced by prior projects. The
shepherds perform as project support personnel in responding to needs of the projects
in tailoring, understanding, and implementing processes appropriate for the project.

Process Deployment Team Meetings are weekly 1-hour meetings held to discuss
some aspect of the SEAS processes. The meetings are facilitated by a process
engineer and attended by all levels of management and some personnel from the
projects. Typically, these meetings take the form of a briefing followed by questions,
answers and comments regarding the given topic. Topics have included; top 10 steps
in adopting mature processes, effective use of measurement, how IS0 and CMM are
related, impacts of inspection techniques for software, how to set goals in project
planning, effective risk management, how our processes conform to Level 5 , and

6

results of recent project experiments presented by project personnel. The meetings are
interactive, with all participants joining in the discussion.

2. Establishment of Product-related Goals Rather than a Goal of
Compliance with Industry Benchmarks

The QIP requires establishment of goals. For organizations such as SEAS, compliance
with industry benchmarks is an important business goal. Much of SEAS process-related
work in the early 1990s was directed to the goal of demonstrating compliance with the
CMM. However, once the QIP had been adopted as the improvement model, SEAS goals
evolved from a focus on complying with industry benchmarks to a focus on improving
products and achieving customer satisfaction. Project buy-in to use of the QIP was easily
achieved once projects appreciated the value of learning to improve their products based
on the experiences of prior projects.

3. Use of Industry Benchmarks as Tools to Achieve Product-Related Goals

SEAS established ISO-9001 as its primary tool for guiding and measuring improvement.
Similarly, the SEI CMM served as a tool for measuring progress in improving the SEAS
software development processes. IS0 requires participation by all elements of the
organization, in contrast to the software development focus of the CMM. However, ISO-
900 1 and the CMM are complementary and support the product improvement strategy as
embodied in the QIP. (As a byproduct, use of IS0 and CMM support senior
management’ s business goal of compliance with key industry benchmarks.) Industry
benchmarks such as IS0 and the CMM served as gates for verifying process maturity and
use. Use of external assessors ensured objectivity in measuring progress toward
achievement of goals related to compliance with industry benchmarks.

4. Use of ‘Separation of Concerns’ Strategy

Project personnel were not required to become familiar with the details of the QIP or
industry benchmarks; deployment of the QIP, ISO, CMM and other strategies was
assigned to the process engineers. This left projects free to focus their limited resources
on improving their products and services rather than on complying with industry
benchmarks. As discussed above, the shepherds provided guidance to projects in
applying the QIP and complying with the industry benchmarks.

5. Document Organization Profile and Improvement Goals

Application of the QIP requires an understanding of current product characteristics
(defect rates, cycle time, accuracy of estimates, etc.) and improvement goals. Therefore,
consistent with the QIP, SEAS documented its organizational and product characteristics
in a profile document (Reference 4) and established SEAS-level improvement goals in a
process improvement plan (Reference 5). These documented “where we are” and “where
we want to go”, and served as the roadmap for measurable process improvement. The
SEAS Quality Management System Manual (Reference 6) documented the roles and
responsibilities of each SEAS group in achieving improvement.

7

The reader should be cautioned that the QIP worked well for SEAS and would likely
work well for other organizations. However, for maximum effectiveness, it should be
applied with consideration given to the culture and maturity of the organization. For
SEAS the approach was to focus on identification and deployment of a formal model
since basic processes were already in place. Recommendations for other organizations are
provided in Section 4.

8

Section 3 Return on Investment

In order to determine the value of investment made toward process improvement, the
SEAS Center measured impacts of improvements in three areas: 1) impacts to the
performance of the organization 2) impacts to business opportunities and 3) impacts to
the products generated. This set of measures of ‘return on investment’ was used to
continually mold the program of process improvement and to help determine which areas
of improvement should be the focus for continued efforts. They were also used to make a
determination as to whether or not the process improvement program was worth the
investment of time and resources and whether or not the program should be continued or
modified. The value of the process program was measured against the cost of the overall
program. This value of the program compared to the investment cost is what we term
‘return on investment’.

3. I Cost of Process Improvement

The cost of the process program was tracked by maintaining detailed records of the effort
expended by staff carrying out activities directly on the program (Process Engineering
staff as well as Quality Assurance staff) and also including indirect effort required by the
project organization in attending special training sessions or attending special audit
activities. The tracked costs include developing processes, deploying, measuring,
training, maintaining (packaging), developing infrastructure, and process improvement.
The costs do not include project operations performing CM, QA, planning, etc., but do
include their cost of participating in studies, training, audit participation.

For the period July 1994 through November 1998 (the date when the Level 5 was
attained) the cost of the process improvement program was approximately 30 staff years
of effort. This cost was primarily the cost of the organization’s process engineers
responsible for defining and carrying out the improvement program. Fairly detailed
records were kept in order to track this expenditure. Records of costs permitted the
analysis of the distribution of effort across different functions and the shift of allocation
from early months of the program to later months of the program.

The records of costs categorized the effort by 5 main areas of activity: (1) writing and
maintaining written processes, (2) deployment of processes (working with projects via
training and direct help in using processes), (3) creating and maintaining the
infrastructure of processes (data bases, libraries, etc.), (4) planning improvement
including the writing of plans, carrying out studies and analyzing measurement, and (5)
reporting and participating in reviews of the process program.

Table 3-1 shows the distribution of the effort for these 5 major activities. Overall, the
highest percentage of effort was allocated to the deployment activities. Process engineers
focused on getting the defined processes into practice (shepherding) as opposed to only
focusing on generating and maintaining the written standards, processes, methodology,
etc.

9

Table 3.1 Cost Distribution for Process (For Organization of 800 Persons Over 4 Years)

Table 3-1 also indicates a shift in emphasis from the writing and refining written
processes to the emphasis on deployment of process. The shift reflects that over time the
process engineers realized that the largest value of the program was in interacting directly
with the projects and not in merely producing and enhancing written processes.

3.2 Value of the Process Improvement

As mentioned in the introduction, the impact of the process program was measured in
three areas: value to the organization, value to business opportunities, value to the
products generated.

3.2.1 Impact to the performance of the organization

The first measure of the impacts of the improvement program was a determination of
perceptions, general performance and structure of the organization as a whole. In
general, it is a determination as to whether or not the personnel viewed the program and
the changes as a value to their own projects performance. This was determined by taking
surveys, interviewing project personnel and managers and by soliciting feedback from
customers.

There were significant favorable impacts to the overall enterprise characteristics of the
SEAS organization. These changes included both technology enhancements as well as
operational impacts that supported a more efficient and effective structure. Specific

10

impacts that were identified by both project personnel as well as managers across the
organization included:

1.

2.

3.

4.

5.

The process improvement program resulted in a focus of achieving common goals for
SEAS. With the formal improvement plan generated and with specific goals
identified as part of the plan, there was a foundation established for all SEAS
personnel to contribute to improvement. The improvement goals and overall program
prompted project personnel to contribute to the overall SEAS improvement program
as opposed to only their own project program. This was supported through the
management reviews, process meetings, progress reporting and assessments (both
internal and external) that were included as part of the program. The improvement
program promoted the concept of SEAS operating as a well disciplined enterprise
rather than a set of individual projects with local goals and challenges only.

This fact of operating as an integrated organization also improved the communication
between projects (sharing lessons, improvement ideas, measurement approaches, and
tailoring approaches for SEAS processes).

The improvement program added a strong discipline for all projects to adopt and
adhere to SEAS processes. The improvement program included the use of formal
assessments such as IS0 audits, SCEs, and internal audits. With the use of regular
formal assessments and with the strong senior management support of the
improvement program, all projects within SEAS had strong incentives to adhere to
the processes and disciplines defined by SEAS.

The improvement program resulted in a significant upgrade and improvement to the
set of SEAS standards, policies, and processes. Since the program adhered to the
concept that changed processes should be driven by needs and experiences of projects
(as opposed to being changed to meet an external benchmark) and since IS0 stressed
the value of producing processes that were short, crisp and directed to the actual
needs of the projects, the set of SEAS standards and processes were revised with a
focus on project need and SEAS lessons learned. This resulted in a set of processes
that the projects felt were much more in keeping with their specific needs.

The improvement program promoted an accelerated adoption of needed technology
change. The activities of the improvement program included the continual search and
incorporation of enhancements that would lead to more efficient development and
operations. There were several technology changes that were driven by this approach
to sustain change. Such enhancements as the universal adoption of on-line, electronic
documentation and the adoption of common CM tools were prompted by the
improvement program. The goal of attaining full IS0 registration was more easily
addressed by producing complete on-line, electronic documentation.

The accomplishments resulting from the improvement program produced a sense of
pride and accomplishment for the entire SEAS organization. The recognition that
SEAS received by achieving IS0 registration and by attaining high maturity ratings
with CMM was shared by all SEAS personnel. Since all projects and personnel
participated at some level, the entire organization felt the recognition received was
something that each of the individuals could be proud.

11

3.2.2 Impact to business opportunities

The second measure of value of the process improvement program is the impacts it had
on business opportunities. The improvements demonstrated by the SEAS program
played a major role in winning new business for CSC. The improvement program in
general demonstrated to potential clients that CSC was very serious and committed to
process improvement. This fact alone can be a discriminator in selecting a support
contractor. It is important that clients see a demonstrated program of sustained
improvement.

In addition to demonstrating an aggressive improvement program, CSC could point to the
levels of achievement recognized by CMM and by ISO. These achievements are
frequently used by potential clients in scoring capabilities of contractors. In the case of
the SEAS achievements, at least 3 programs used the independent ratings (IS0 and
CMM) and the established processes as consideration in selecting CSC for additional
work. The additional work in 1999-2000 amounted to over $500M in contract value.
The established SEAS processes were identified as key elements of the new work.

3.2.3 Impact to the software products

Probably the most important measure of success of any improvement program is the
measure of product improvement. Have the products and services been favorably
impacted by the changes made to process?

The SEAS improvement plan identified 4 product measures that were part of the goals of
improvement. The product measures included productivity, defect rates, cycle time, and
estimation accuracy. From the start of the program in the Summer of 1994, detailed
measures, records, and general information were recorded for the purpose of guiding the
change and for tracking impact of any changes that were made. Details of the measures
that were tracked and the results of analyzing the changes to the product measures were
reported in 1998 at the time of the Level 5 rating. Details of these results can be found in
Reference 7.

By reviewing the detailed process ratings over many years along with the detailed
product data (productivity, defect rates, etc.) an attempt was made to statistically
determine the correlation between the process changes (increasing maturity level) and the
product changes. The analysis showed a constant 6 percenuyear improvement for both
productivity and quality from the start of the program through the end of 1998. (See
Figure 3-1). Further analysis showed that there was also a 6 percent/year improvement
from 1987 through 1994. Attributing sustained product improvement to process change
from this evidence is not conclusive. Improvements in technology, personnel,
environments, as well as process change, remain as possible sources of the observed
product improvements.

12

Average Productivity for all Projects Active in Year

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000
Year Project Active

Average Defect Rate for all Projects Active in Year

6 00
V s
Y
p 300

W

0 00
1982 1984 1986 1988 1990 1992 1994 1996 1998 2000

Year Project Active

W Consistentlconstant 6% per
year productivity
improvement - even prior to
CMM Level 1 rating

improvement - even prior to
CMM Level 1 rating

W No change in improvement
rates after aggressive
improvement programs
started

W Also 5% per year quality

Figure 3-1 Productivity and Quality Trends Over Time

When an attempt was made to correlate process maturity of projects with the product
measures (Figure 3-2) there was no statistically significant result. The correlation was
computed from data extracted from SCE reports generated for each project. Each project
was reported compliant, partially compliant or not compliant with each Level 2 and 3
Key Process Area (KPA). From this data, each project was assigned a maturity ‘score’
on a scale from 1 to 3. Product measures and the maturity ‘score’ were analyzed for a
correlation between high maturity ratings and the high performance of each of the
product measures (quality, productivity, cycle time and predictability). Correlalations
were all of low significance; the R2 values ranged from a low of 0.15 to a high of 0.49.
There is not a clear explanation for this, but the authors surmise that the strongest
explanation is that process is simply a very difficult parameter to measure in isolation.
Using a project’s maturity rating as the only measure of process may be too simplistic.
Details of this process are explained in much more detail in Reference 7. Work on this
analysis is continuing.

13

Productivity

700 -
600 -

I 500 -
3 400-

300 -
200 -
100 -

0 7

* -

R b 0.25 without two exceptions *

-
I l

a
1 a

Defect Rate

9 00 -
6 00 -
7 00 - $ 6 0 0 -

2 00 -
1 00 -
000

a

R 2 = 0.1864

a

*
' B

, .+

Detailed measurement data on
90 projects was accumulated
(over 9 years).
Data included accurate product
data (cost, defects, size, etc.)
and process data (based on
assessments).
Analysis to determine
correlation between process
maturity and product data
showed minimal correlation.

Figure 3.2 Impact of CMM Maturity on Cost, Quality, Manageability

3.3 Relative Impact of Improvement Activities

There were many activities undertaken and many avenues pursued with the goal of
attaining the high maturity ratings and demonstrating improvements to the SEAS
organization. Shortly after the Level 5 rating was achieved, a review of the lessons,
activities and steps was held in an attempt to determine which of the steps seemed to be
of most significant value (and which seemed to be of minimal value).

Sources of information included surveys collected from project developers and managers,
lessons learned reports generated periodically during the 4-year initiative, interactive
workshops held (as part of the regular 'Process Deployment Team Meetings'), and
interactive discussions held with the process and quality assurance personnel. Personnel
were asked to identify which activities had the most favorable impact on improving
processes within SEAS as a whole and on projects specifically. Four activities
consistently were rated as being the most effective in leading to the success of the process
improvement:

Shepherding

Process deployment team meetings

IS0

The first two activities were discussed in detail in Section 2.

Library building with process evidence

14

The evidence gatheringAibrary building was an exercise requiring projects to produce
specific evidence for key aspects of project processes. There were several benefits to this
exercise:

It allowed the process engineers to review evidence and point out potential
deficiencies (so projects could make adjustments)

It disciplined the projects into reviewing just how processes were being implemented.

It enabled the sharing of concepts across projects through the sharing of artifacts and
the discussion of approaches at process deployment team meetings.

It helped to identify processes that may be misused or ineffective.

IS0 was almost universally identified as one of the most beneficial tools adopted in
pursuing excellence in process within SEAS. Although CMM had been part of the
culture within the organization for over 7 years, the use of IS0 was identified as one of
the top activities in attaining excellence. Several reasons were given for this:

1.

2.

3.

IS0 addressed the entire SEAS organization as opposed to software projects and
personnel only. This required that all personnel be involved in the concept of process
which resulted in SEAS becoming a fully integrated enterprise with process as a
major theme.

IS0 was much easier to understand and to adopt than the full suite of CMM KPAs. It
de-emphasizes process detail and focuses on understanding and applying the basics.

IS0 successes gave the organization a ‘can-do’ attitude which was reflected in a
much higher level of confidence when more detailed reviews of CMM were
addressed.

15

Section 4 Lessons Learned

As was noted previously, detailed records of the experiences, costs, impacts and general
impressions of the overall activities were archived by the process improvement team. In
reviewing this information and by carrying out extensive interviews with project
personnel and managers, the successes and shortcomings were analyzed in an attempt to
identify the most effective activities and approaches that led to the high maturity level of
the SEAS Center. There are 7 points that were gleaned from the experiences as reflecting
the most important activities that an organization should adopt as part of their
improvement program.

Recommendation I : Operate as a Level 5 Organization

This recommendation suggests that an organization should not focus on sequentially
addressing the CMM Levels from 2 through 5 nor should they focus on sequentially
addressing individual KPAs. Instead, the most important element of the improvement
program is to establish a culture of continuous improvement based on the goals and needs
of that organization. The concept of ‘continuous improvement’ can be termed an
‘optimizing’ organization (Level 5) and has several key elements that should be
established from the start:

Focus on improvement of the product (as opposed to merely improving process).
Such goals as cutting defects or improving productivity or decreasing cycle time
should be the measure of change; not the number of processes that are established.

Step 1 is to define the baseline of the products and process. That implies that the
current product characteristics (cost, time, defect rates, effort distribution, etc.) must
be captured along with the baseline of process characteristics (extent to which KPAs
are satisfied). In addition to establishing the existing strengths and deficiencies of
processes (via process gap analysis) one must generate a baseline or profile of the
product characteristics. This information is the first step toward producing
quantifiable information of the environment and is used to track impacts of process
changes as well as to produce engineering models of the environment. Information
for this baseline is collected from existing measurement data, surveys, project
archives, interviews, and any other source of data that may provide some insight into
the overall product profile.

A measurement program is a requirement at the start of the overall improvement
program. Some models imply that a mature measurement program may not be a
critical element of early stages of an improvement effort, but the concept of operating
as a Level 5 requires that a measurement program be established immediately. The
measurement program is required for 3 specific reasons: (1) to establish models of the
environment, (2) to manage projects, and (3) to guide change. An example of basic
models generated early in the improvement program is depicted in Figure 4-1 The
early data from SEAS was used to produce these models which in turn are used by
managers and by process engineers. Such models can be generated very early in the

16

program and then may be continually refined as improved measurement data is
collected.

NASA Center Software Product Characteristics
(Cost Distribution)

By Support Activity By Development Activity

Size of Change Vs. Effort in Maintenance

0 5000 10000 15000 20000
Total SLOC Added Changed or Deleted in Release

Effort = (0 36 * SLOC) + 1040 R**2 = 75 S Enhancement Releases
Mixed Releases

@ Error Correction Releases
- Linear (Enhancement Releases)

Defect by Error Class (PCS)

..

‘ 250

Figure 4.1 Sample Engineering Models of Process

Both technical and management activities should be part of the improvement activity-
as opposed to management only. Not only are process attributes important to the
improvement program, but the selection and understanding of changing technical
activities must be integrated into the program. This implies the continual infusion,
tailoring and measuring of technical changes.

Recommendation 2: Set Specific Incremental Gates

Although the improvement program is viewed as a continuous, sustained program that
has no completion criteria, incremental check points for the organization were a tool that
accelerated the improvement efforts and acted as a catalyst for the program. These check
points were most effective when they were performed by external reviewers; specifically
SCE teams or IS0 teams.

In the period June 1994 through November 1998, seven independent reviews were
conducted. Obviously one has to be cautious of overtaxing the development and project
organizations by requiring excessive time in participating in reviews, but the periodic
reviews do act as a vital tool in assuring that all personnel are reviewing their adherence
to processes and their awareness of the overall plans and goals of the organization.

Internal audits should be part of any organization’s process program, but they do not
replace the value of the reviews carried out by an independent, external team.

17

For the SEAS organization (about 850 persons) there were formal reviews occurring
approximately every 6 months, sometimes more frequently. IS0 surveillance audits
occur each 6 months and the external CMM assessments occurred approximately yearly

Recommendation 3: Adopt the Concept of ‘Separation of Concerns’

Another critical element of a successful improvement program is that of organization.
Not only must there be strong support from senior management, but there must be a
designated process improvement organization whose responsibilities include expertise in
process models, CMM, ISO, process improvement concepts, measurement and available
assets within the organization. With one organization focusing on the concepts of
process improvement and focusing on the generation of Program-level assets to be used
by projects, then projects can focus on the task of producing systems and software.

In an ‘Experience Factory’ (Reference 8), one organization (PEO) is responsible for
driving process improvement while the other organizations (projects) focus on the task of
producing a quality product. It is not necessary that a project organization become expert
in process models; it is only necessary that they work with the process organization in
sharing information and adopting processes and assets made available to them.

The ‘separation of concerns’ concept implies that the project personnel are experts in
producing systems and the process organizations are experts in process improvement and
associated activities. There is no need to train project personnel in the details of process
models such as CMM or ISO, it is only necessary they understand, and apply the process
assets provided by the process organization.

Recommendation 4: Deploy Processes to Projects

One of the most effective steps in attaining process maturity was found to be that of
having the process engineers work directly with the projects in helping to define, apply
and understand appropriate processes for their particular project. This activity is in
contrast to that of having the process staff work on writing, refining, tailoring, enhancing
written processes. The effort put forth in working directly with projects will be much
more effective than generating additional written standards.

Obviously there must be a written foundation describing the processes that are to be
applied in the organization, but our experiences indicated that occasionally excessive
effort is put forth in developing and refining written processes. The means by which the
process engineers accelerate the ‘deployment’ of the appropriate processes is through the
activity of ‘shepherding’ where process and quality engineers become experts in the
organization’s baseline, then they provide services to the projects in explaining just how
to tailor, implement, and sustain relevant processes on their projects.

In addition to the shepherding activity, the process engineers should adopt the idea of
scheduling periodic (weekly on SEAS) ‘Process Deployment Team’ meetings where a 1-
hour discussion of process implications and use is presented. All managers of the
organization are invited and the process engineers lead a discussion of a process topic; for

18

example ‘How is the Quantitative Process Management KPA applied on a project in this
domain?’ or ‘What engineering models of the environment exist for our use and how do
we use them’?’

It is the responsibility of the process engineers (SEPG in CMM terminology) along with
the Quality Assurance office to provide services to the project organizations by
identifying appropriate assets for the projects and to help them apply these assets; without
burdening the projects with undue overhead.

Recommendation 5: Measure Improvement by Product Not by Process

There is the commonly accepted belief that the quality of the software product generated
is directly affected by the processes used to generate the product. For that reason,
organizations implementing a process improvement program, in reality are targeting to
favorably impact the end products generated by the development. They are anticipating
improvement measured by product measures, ie., cost, defect rates, cycle time, accurate
estimation, etc.

Although this is an obvious and simple concept, organizations occasionally overlook the
importance of continually tracking the end product to verify that improvements in process
are meeting the goals of improving the product. Too often, we measure success as the
attainment of certain CMM levels, or IS0 registration or producing more extensive
processes. Measuring and tracking the product change is often overlooked. Although it
is very difficult to measure trends in products over a long period of time, the exercise of
establishing goals, defining measures, and capturing the starting point of these measures
is valuable in itself. It provides the discipline of understanding the projects and
understanding the environment through the generation of models, goals, and applied
measurement.

Senior managers as well as clients often pose the challenge of proving the worth of the
process improvement program. Instead of arguing that these people ‘ . . .just don’t
understand the value of process.. . ’, the process organization must be prepared to respond
to such challenges with specific measures that represent the product; not only the process.
The questions are very appropriate questions and the measurement program must
concentrate on continually capturing product attributes so that such questions can be
addressed; even when the results may not show the expected benefits of the program.

Recommendation 6: Allocate Appropriate Resources

The activity of process improvement as well as process in general, requires effort.
Although the goal is to have the process improvement activity produce a greater return on
investment than the cost of the investment, the overall activity still requires a sustained
effort. It is recommended that any organization identify the level of resources that it will
commit to sustain the processes and process improvement program, then adhere to that
commitment as it would with any project. It is a mistake to assume that this activity can
be absorbed as ‘no cost’ by merely requesting that project personnel devote several hours

19

per week on the activity and that specific resources do not have to be allocated. From the
experiences at SEAS, this approach will not adequately support the process program.

Based on nearly 8 years of experiences with varying size of organization, it was found
that the typical allocation of resources for the process program was approximately 1 % to
1.25% of the size of the entire organization. This effort is in addition to the specific
project activities that will require additional resources. It also is recommended that the
Quality Assurance activities allocate from 1.25% up to 2% of the organization that it is
supporting.

Table 4-1 shows the relative cost of the process activities for different size organizations.
The data is based on direct experiences of SEAS over the 8 year period.

Requires .8% to 1.3% for process improvement activity
Quality Assurance requires from 1 % to 1.5%

Spend 2 to 3 times more effort deploying versus writing
processes

Table 4.1 Allocate Appropriate Resources (Based on SEAS History)

Recommendation 7: Produce 3 Specific Documents Early

There are numerous activities that must be addressed when an organization initiates a
process improvement program and there are several products that also must be
considered. Based on the SEAS experiences, it is recommended that 3 specific
documents be produced or at least planned when the process program is established.

The 3 documents include: (1) Quality Management System (QMS) document, (2) process
improvement plan, and (3) profile of the organization.

20

1. The QMS is a required document of ISO-9001 and has proved to be an extremely
valuable handbook for SEAS as well as other organizations who have produced such
a document. It has been used as an orientation guide for new employees and is a
valuable reference for all personnel in characterizing the business operations of the
program. It is recommended that the document capture:

Description of the organization and the staff (roles and responsibilities)

Description of the processes in place including their application.

Standards, policies, methodologies, handbooks and general guidance.

Overall process planning (measurement program and process improvement
program)

Description of how the organization complies with required benchmarks (ISO,
CMM, SA-CMM, etc.)

2. The Process Improvement Plan (PIP) describes the goals, responsibilities, and
approach to attaining the improvement goals. It adds the structure of a project to the
activity with schedules, milestones, and most importantly- specific goals. The goals
should include product as well as process goals.

3. The ‘Profile’ of the organization captures the general state of process usage by
carrying out some type of gap analysis, but the bulk of the document should contain
the product characteristics. This is the first step toward the goal of engineering
software by producing quantifiable information. Sample recommended product
information includes:

Amount of software in development and in maintenance

Distribution of effort across the life-cycle phases

Typical staffing profiles

Defect characteristics (number, type, severity)

Testing profiles

Maintenance costs/ per size of unit

Typical software cycle times (time to develop per size, time to make changes)

Variance in initial estimates vs. final actuals (size, cost, schedules)

21

Section 5 Conclusion

Over a 5-year period, the CSC SEAS Center carried out an aggressive process
improvement program that resulted in an optimizing culture throughout the organization.
The CMM Level 5 rating, achieved November of 1998, verified the success.

Focusing the success of the process improvement program on specific product goals, and
using the compliance with industry benchmarks as a tool has helped make process
improvement part of the SEAS culture. The QIP of the Software Engineering Laboratory
(SEL) was used as the model for improvement and other industry benchmarks served as
tools in achieving documented product goals. This paper describes aspects of the process
improvement program that were key factors to the successful achievement of the CMM
Level 5 rating.

The value of the investment made in process improvement was shown to be significant
for the overall operations of the Center as well as the business opportunities. The
quantitative value on product improvement was shown to be very difficult to determine
and no conclusions could be made there.

As a result of the five years of activity, the SEAS Center produced seven
recommendations that any organization should follow in implementing a process
improvement program. These recommendations focus on building a culture of continuous
change and improvement throughout an organization.

22

References

1. Paulk, M., Curtis, B., Chrissis, M., Webber, C., “Capability Maturity Model for
Software Version 1. l”, CMU/SEI-93-TR-24, February 1993

2. Basili, V. R., “Quantitative Evaluation of a Software Engineering Methodology,”
Proceedings of the First Pan Pacific Computer Conference, Melbourne, Australia,
September 1985

3. F. McGarry, G. Page, V. Basili, et al., An Overview of the Software Engineering
Laboratory, SEL-94-005, December 1994

4. CSC (internal document), “SEAS Software Profile”, September 1995

5. CSC(interna1 document), “SEAS Process Improvement Plan”, Version 3, April 1999

6. CSC(interna1 document), “SEAS Quality System Manual”, Version 3, April 1999

7. McGarry, F., Decker, W., Burke, S., “Measuring the Impact of Process on Product”,
Proceedings of 22nd Software Engineering Workshop, December 1997

8. Basili, V. R., “Software Development: A Paradigm for the Future (Keynote
Address),” Proceedings COMPSA C ‘89, Orlando, Florida, September 1989

23

Lessons Learned from the Failure of an Experience Base Initiative Using a Bottom-up Development
Paradigm

Arne Koennecker, University of KaiserslauternIFraunhofer IESE
Ross Jeffery, University of New South Wales
Graham Low, University of New South Wales

Address for correspondence:

Ross Jeffery
Centre for Advance Empirical Software Research

School of Information Systems
University of New South Wales

Sydney 2052 NSW
Australia

Email:

Abstract.
This paper describes the development of an
experience factory in an Australian organization.
Information structures were well developed and
used in the daily work of the organization. This
included the use of network technology as well as
the personal interaction between department
members. Highly motivated personnel drove
improvement via new techniques, knowledge, and
tools. A special focus existed to simplify work
tasks through tool support. Daily work and
problem solving was strongly based on personnel
interaction and access to knowledge bases
(documentation, mail lists, etc.). The goal of the
project was to package personnel experience and
best practices and provide an effective framework
for access and integration. The system was
decommissioned shortly after the completion of the
project. The reasons for this are discussed.

1. Introduction
Faced with improvement needs, in 1998 the
company started to put special attention on
approaches to support improvement activities in a
structured way. Like many organizations in the
software industry, improvement aspects and
strategy issues ranged from product quality and
project management to the overall improvement of
software engineering skills. Further local
improvement aspects had been identified in
software process assessment using the CMM
(Capability Maturity Model from the SEI [l]) and
the IS0 9001 standard.

At the end of 1998, a project was started in co-
operation with The Centre for Advanced Empirical
Software Research (CAESAR) to evaluate the
Experience Factory (EF) I Quality Improvement
Paradigm (QIP) [2] concept. The concept was to
be evaluated as an approach to support local
improvement activities and to be applied as an
approach in the given environment at the R&D
department. The aim was to fiid a suitable
approach within six months and to start realization
of benefits as early as possible.

The choice of the EF I QIP concept was motivated
by several aspects. Firstly, it was seen to be a
promising concept that had been the subject of
research projects in the past such as PERFECT
(ESPRIT I11 project, sponsored by the CEC [3]).
Secondly, the concept had already been applied in
other organizations such as the Software
Engineering Laboratory at NASA [4] and Daimler
Benz AG [5]. Thirdly, the EFIQIP concept reflects
the state-of-the-art in the field of improvement
approaches, and therefore is of interest to the
company.

The focus of the project was guided by five
questions.
(1) Where has the EF concept already been

applied, and what have been the experiences
with it?

(2) What are the important characteristics of the
company’s environment, and of the company’s
philosophy, which need special consideration?

(3) Is the EF approach applicable considering the
environment specifics in the organization.

(4) If (3) is true: How has the EF approach to be
tailored so that it fits the needs and
characteristics of the organization?

(5) If (3) is false: How can an organization-
specific approach be developed which
considers EF principles?

Principles of the classical EF approach
The EF approach describes an organizational
framework, which addresses the issues of product
and process improvement in software development
organizations by providmg an environment for
continuous improvement. The EF approach defines
an environment for controlled experimentation,
knowledge reuse, experience packaging, and
analysis of the development processes. The
improvement environment consists of two parts:
the project organization (PO) and the experience
factory organization (EFO). Each of these follows

distinct steps in the Quality Improvement Paradlgm
(QIP). The project organization's major aim is to
deliver software products according to given
requirements. The PO uses information to improve,
say, the product quality, the project performance or
the reliability of project planning.

The Quality Improvement Paradigm
The QIP is the main driving force for continuous
improvement and is integrated in both the PO and
the EFO. It is defined as consisting of six steps [6]:

1.

2.

3.

4.

5.

6.

Characterize the current project and its
environment with respect to existing models
and metrics.
Set the quantiJiable goals for successful
project performance and improvement based
on the fiist step and the business and project
specific goals.
Choose the appropriate process model and
supporting methods and tools for the project
and define a project plan, which considers the
decisions and definitions made in steps 1 and
2.
Execute the process, construct the products,
collect and validate the data, and analyze it to
provide real time feedback.
Analyze the data and evaluate the current
practices, determine problems, record findings,
and make recommendations for future project
improvements.
Package the experience in the form of updated
and refiied models and other forms of
structured knowledge gained from this project.
Save it in an Experience Base to be reused in
future projects.

The PO interacts during the project with the EF
organization (EFO). The EFO supports it with
knowledge and experience gained in the past and
provides feedback about the performance and
quality of the current project while analyzing the
data provided. The task of the EFO, besides
support during the software life cycle, is to package
experience gained during projects in a reusable
form and to store it in an Experience Base (EB).

The interacting PO and EFO realize two feedback
loops, a project feedback loop that takes place in
the execution phase (support & analysis), and an
organizational feedback loop that takes place after
a project is completed (analysis & packaging). The
second feedback loop changes or improves the
organization's understandmg of software
development by packaging and reusing experience
and making it accessible to future projects.

How to build and run an EF
To start an EF there are two possible approaches: a
top-down or a bottom-up approach. That is
proceeding from defining processes, structures,
products, and responsibilities to collecting concrete
experience data, or else collecting data and
proceeding back up a similar hierarchy. Basili and
McGarry [7] propose a top-down approach, which
aims to defiie and establish the required elements
before the improvement activities and the data
collection takes place. This provides a guiding, and
more or less stable structure and the time to focus
on analysis of results and products rather than on
integrating changes in the structure while working
with them. Five key steps characterize the
described top-down approach: (1) Obtain
commitment, (2) Establish structure (3) Establish
processes (4) Produce baseline (5) Identify
potential changes.

The EF at the SEL-NASA
The Software Engineering Laboratory (SEL) was
started in 1976 at the NASA I GSFC comprising
three organizations: NASA I GSFC Flight
Dynamics Division, University of Maryland
(Department of Computer Science), and the
Computer Science Corporation (Flight Dynamics
Technology Group). Its goal was to understand and
improve the software development process and
products within the GSFC Flight Dynamics
Division. In this environment the EF concept was
developed and fiist published in 1985 by V. Basili
(with a later version in [2]) as a concept based on
the research and experience of the SEL. Since then
the EF has been successfully applied in the NASA
environment and used in more than one hundred
projects dealing with different improvement issues
and technologies. The experiences range from
detected impacts through the use of EF on product
and process attributes, to recommendations as to
what to consider when establishing an EF.

The EF at the Daimler Benz AG
Software plays a major role in the product range at
Daimler-Benz. Outside of the SEL, the Daimler
Benz experience is the only other report directly
related to the establishment of an EF in a practical
development environment. Furthermore, they
describe their experiences in the fiist year of the EF
project, which was significant to our need to
establish benefits in a short time period. Three
separate projects formed the basis of analysis.
Project A was in the aerospace domain with mainly
in-house software development of large embedded
systems and rigid real-time constraints. A
measurement program had already been
commenced. The goals were to make improvement
efforts persistent and repeatable, project effort
predictable, and to support technical reviews. The

initiative comprised two application projects and 2-
3 people were concerned with EF activities. Project
B involved small-embedded systems. The
development changed from contractors to in-house
in recent years. The goal was to build core
competencies and clarify development questions
such as how to keep software portable, and how to
make sure that each planned function was
implemented. Review techniques were identified as
potential support for this. The initiative comprised
1-2 application projects and 2-8 people were
concerned with EF activities. Project C dealt with
large administrative software units for managing
internal business processes. Software requirements
were defiied in-house, but the development was
outsourced. The focus for the EF was quality
assurance, especially in outsourced development.
In this case the initiative comprised 3 application
projects and 2-3 people were concerned with EF
activities.

For projects A and B the company followed the
top-down approach discussed above. The
measurement of the baseline started several months
after the EF initiative. This first stage consisted of
the defiiition of essential EF structures, processes,
roles, and products. They also decided in project B
to assist technical reviews and collect related data
to help solve current problems. This was done
without defining structures, and is therefore seen as
a bottom-up activity.

For project C, they decided to collect potentially
useful data immediately after the definition of
fundamental goals using a one-day workshop. The
EF elements like processes, tasks, and product
structure were only defined when demand for that
occurred. This characterizes an evolutionary
approach and is seen by the authors as a bottom-up
approach. The main reasons to follow this approach
were:
(1) “The immature practices needed to be

improved rather quickly, but they did not
require highly sophisticated analysis
techniques or experience structure
documents.

(2) Structures would not be stable anyway.
(3) People were the bottleneck. Effort needed to

be concentrated on content fiist.” [5]
The choice between a top-down or bottom-up
approach was h t h e r influenced by the opinion that
stable and mature structures are needed for a top-
down approach.

The experiences to date which were of most
interest to this project were:
(1) Pros & cons of a top-down approach: The
defiiition of the EF elements in the top-down
approach makes it easier for the EF participants to
recognize the existence of the EF but provides less

concrete early benefits for them. The approach can
not be performed without a close connection
between the EF and the processes that are in place.
(2) Pros & cons of a bottom-up approach: It
may enable a swift realization of the EF results.
Results are visible in a short time, but this effect
cannot be planned and it is often hard to prove the
usefulness beforehand, making visibility of the EF
benefits more difficult.
(3) There are many sources of reusable
experiences and measurement is just one of them,
e.g., intermediate products (like a QA plan) are
often seen to be more useful for reuse than concrete
experience packages, even when their impact has
not been analyzed.
(4) There were no problems in handling and
structuring the data. Collecting data and qualitative
experiences were the bottleneck.

The EF in the PERFECT project
The PERFECT project is an ESPRIT I11 project
funded by the Central European Commission
(CEC) and started in the early 90’s. Organizations
like Daimler Benz, Siemens, Q-Labs / Ericsson,
and the University of Kaiserslautern / Fraunhofer
IESE came together with the aim to find a more
detailed and tailored approach for the introduction
of an EF into organizations. The benefits seen for
the approach used include explicit goal setting,
focus on products, establishment of a separate
organization driving the improvement program,
and the tailoring of the activities to specific needs.
This is a realization of the principles stated in the
EF concept [2].

2. Establishing the EF Goals and
Methods
The following points were seen as important in
establishing the strategy that would be adopted in
the organization.

Arguments exist that the EF assumes a stable
environment, but that this is not suitable for all
companies. Their environments may be too
dynamic because of short technology cycles. Some
organizations argue that stable structures might
hinder progress and innovation.
0 The time aspect is a critical point. The time
frame for fiist results seems long when following
the top-down approach. This can cause problems
maintaining participant motivation and
management commitment.

The present EF / QIP approach remains a
general, abstract framework, which lacks explicit
implementation guidelines and detailed experience
reports which are needed in industry. The data that
is available at the moment is either experimental or
based on a long-term application.
0 The EF originated from a scientific and
govemment environment at SEL-NASA and

proved suitable after long-term application. Are the
results transferable to software companies in
general?
0 The bottom-up approach trialled at Daimler-
Benz seemed to work as did the top-down
approach. There is no detailed data for a
comparison of the results of the two approaches.
The bottom-up approach brought earlier results. Is
a bottom-up approach the better alternative when
preliminary processes and an understanding of the
environment already exist?

The EF I QIP approach requires a high degree
of experimentation to evaluate techniques. Some
companies, especially large ones with R&D
departments, have the resources to do that but is it
feasible in smaller companies? Often improvement
decisions and technology adoptions have to be
made much faster than is possible by using pilot
projects.
0 It is not completely clear whether
improvements achieved related to things like reuse
and productivity, have their root cause in the
introduction of EF concepts or in the successful
application of technology. Would the switch to
promising techniques such as 00 without the
introduction of EF have had the same effect?
Setting the project goals
Based on this analysis it was decided that: “The
project aim is to develop tools and techniques to
improve the speed and quality of software
development and to enhance the transfer of process
knowledge between projects and project groups.”
In the organization there were six improvement
initiatives present: (1) process tailoring, (2) CMM
and IS0 900x assessments, (3) personnel skill
improvement, (4) company improvement strategy,
(5) self motivated tool development and tool
integration (innovative spirit), and (6) the
measurement program.

Thus several improvement activities were already
present and action plans defined from the results.
What the organization needed was a framework to
support and focus the related actions. Process
tailoring and definition existed and were already
applied in parts of the department. Further action
was needed to spread them out across the whole
department and reuse experience gained during the
initial implementations. It was not the main goal to
achieve a state such as CMM level-5, which was
seen as a hinderence to the company philosophy
which was to establish an environment which is
reliable and repeatable but not an overly defined
one. In the organization the developers initiate a
great part of the improvement activities. They
identify problems and possible solutions, take
ownership and develop solutions in the form of
tools or work instructions. This was to be supported
and recognized. The present personnel skill
improvement activities were to be supported as

well as the team spirit and the overall interaction I
communication. It was viewed that stable and fixed
structures tend to hinder that. The company
strategy and goals had been broken down into
improvement activities at the project and
development level. The project needed to focus
and r e f i e these (GQM). The existing
measurement program was showing promising
results and indicating new improvement items.

It was determined that a bottom-up approach could
build on current measurement and initially def ied
processes and could immediately deliver data
associated with known improvement issues. It
would also give incentive to the desired tool
development. Next we set out to determine
whether environmental conditions would also
support a bottom-up approach. The situation in
each of the project teams is significantly different
with respect to techniques and tools deployed.
There was an identified need to identify best
practices, to document experiences with them, and
to support the transfer of knowledge between
project teams. It was obvious that the concept of
the experience base could help. The information
access environment was focused on network
technology. Every project team had an internal I
external homepage to spread information, they had
a project server with related documents, a central
mail and document repository existed to get
information around and to document daily
experiences. Documents templates give the
information an identical structure to improve
readability and to ensure consistency of data. The
mailing and posting repository (Microsoft Outlook)
had proved its usefulness in recent years by giving
a basis for dlscussions and to disseminate
information. Motivated by the general
improvement spirit in the organization, the usage
frequency of this repository was fairly high. It was
possible to consider using this already-existing,
documented experience for an Experience Base
(EB). But what was still needed was an effective
access technique for the information stored, e.g., a
search engine.

Both the normal daily work and solution seeking
resulted in high interaction between department
members. People were identified as having special
knowledge regarding different development fields
and the general attitude was to provide others with
this knowledge when needed. From unstructured
interviews with team members it was identified that
it would be useful to package the experiences
(daily work knowledge). Initial examinations of the
amount of already documented knowledge in
reports and mail archives showed that a basic
knowledge & experience base already existed on
the Intranet but was not yet efficiently usable.
Because of the lean hierarchy in the department,

self-motivated improvement activities and the
integration of developer opinions was encouraged
and simplified. This leads to an environment that is
driven dynamically by the team members.

To summarize, information structures were well
developed and used in the daily work. This
includes the use of network technology as well as
the interaction between department members.
Highly motivated personnel drive improvement via
new techniques, knowledge, and tools. A special
focus existed to simplify work tasks through tool
support. The daily work and problem solving was
strongly based on personnel interaction and access
to knowledge bases (documentation, mail lists,
etc.). The goal therefore had to be to package
personnel experience and best practices and
provide an effective framework for access and
integration.

From these findings we were convinced that the
organization should establish an improvement
environment based on the EF concept, but that the
appropriate approach was bottom-up.

We defined the EF concept for the organization
based on five steps:
Step 1 collect experience and knowledge,
Step 2 publish the experience documents and
provides an access framework,
Step 3 integrate experience in an environment were
it is needed,
Step 4 analyze how the experience repository is
used, and
Step 5 extend the structures of the improvement
environment when the need occurs.

What is different to the classic EF approach &
concept?
The main difference to the EF/QIP concept
described in [2] and the concept we describe is in
the overall philosophy. First we favored a bottom-
up approach starting with providing useable
experience from the beginning rather than spending
time defining processes and structures for a top-
down approach. Moreover, our approach places
knowledge management and integration in the
center to serve as a driving force for continuous
improvement. This is quite different to the EF,
which uses the QIP [2] and the GQM [SI as dming
forces.

One main concept of the classical Experience
Factory is experience generation and explicit
experimentation with new technologies to evaluate
them and to measure their impact on product and
process characteristics. Our approach goes away
from explicit experience generation, and focuses on
gathering existing experience and supplementing it
as it grows using access technology. Furthermore

it is not based on the principle of gathering
experience from experimentation. Rather the
approach uses experience gained with software
engineering techniques and new software
technologies in the daily work rather than explicitly
experimenting with new things. Experience transfer
supports the growth of the experience inherent in
the environment.

Another difference is that our approach describes
how to start the implementation of the first cycle
(gathering of existing experience). Our approach
allows both the improvement structures and the
development environment mature over time. As in
the EF framework our experience management
environment (EME) supports the documentation
and storage of every-day experience. Further more
both approaches give structure to establish a
continuous improvement environment. The EME is
seen to be more evolutionary and able to be
adjusted to special needs. The EF gives a
predefined structure to be established and therefore
changes the existing way to do things.

Requirements for application
Due to the fact that this approach was motivated by
environmental characteristics, there exist certain
requirements for the application. If another
organization intended to apply our approach it
should check the following characteristics, which
we see as minimal requirements.

A highly used and developed network
environment has to be present and integrated in the
daily processes.

Information repository structures need to be
present in the environment, i.e. an Intranet structure
using mail archives, project servers, document
servers, etc. is needed.
0 At least initial processes have to exist, which
define when certain information has to be
documented, e.g., meeting notes.

For the documentation style, corporate
templates should exist, which give information a
common structure.
0 Activities have to exist which serve to identify
improvement needs outside the knowledge
management focus, e.g. CMM assessment.
0 There has to be a conviction that there exists a
high amount of already documented experience and
knowledge in the environment. The document
could emphasize things like process
documentation, reports, mail archives, web pages,
etc.

The staff have to be self-motivated to search
for experience or knowledge.

The staff have to be self-motivated to
experiment with new technologies for the
improvement of products and their skills. The

company philosophy should support this by
encouraging the staff to do so, e.g., planing time for
that and recognizing those activities and the results.
0 The organization must have an attitude to let
the developers drive changes influenced by strategy
and improvement goals. What this also assumes is
that there exists a company thinking rather than an
individual focus.
0 An organization needs resources to establish
the concept framework and to maintain it while it
matures and grows.
0 Initial process and project environment
defiiitions should be available, which build a
context for experiences and which can serve as
success story examples. At least one project
environment should exist, which has documented
experience with the introduction of a defined
development process.
0 The project management staff should be open
to constructive suggestion concerning
improvements to their development processes.

Requirement
RS 1
RS2

RS3

3. The organizational solution
The project was initiated by a senior manager with
a reputation as a successful champion. Staff were
involved in all aspects of the initial concept design
and subsequent implementation. A project manager
from the organization was assigned the task of
overseeing the experience factory project. Other
staff were involved via seminars, indwidual
consultations and an experience factory website
established as a result of requests from the fiist

Description
Price: the price of the tool shall be reasonable, preferably freeware.
File types: the tool shall be able to create an index of common files includmg
Microsoft Office documents, HTML, PDF, MS exchange files.
Interface Qpe: the tool shall provide a web-based interface to apply queries on
the document index to find appropriate information. It shall at least be possible

staff seminar. Thus it was with confidence that we
embarked on the technical design and
implementation of the experience factory in the
organization.
Since we were convinced that the environment
already contained a significant amount of
documented experience (the mail archive contained
around 8500 documents six months after
commencement), we began by finding an
appropriate technology to gather this experience
and make it searchable. Using the tool we selected
(Microsoft Site Server 3.0) we also had a
framework to make the gathered experience
accessible via a web site. Therefore we created a
separate web page providing the interface to the
indexes. This also provided the integration step
into their daily work. When someone wanted to
fiid existing experience about a task or general
information from the environment they could now
do that using the web page.
Evaluation of indexing tools
The first step in the evaluation was to define the
requirements for an appropriate indexing tool.
These were separated into two kinds of
requirements. We defined requirements for a
surface-evaluation, i.e. an initial evaluation to
check basic hctionality, and when a tool passed
these we evaluated it against further interface and
behavior related requirements. In Table 1 they are
marked as RSx (surface) and RDx (detailed)
requirements :

RD 1

- -
network. Tools running on a Unix machine but able to access NT would also
fulfill this requirement.
Performance: the tool shall be reasonable fast, e.g., search queries shall be

I to reduect the query input andoGput froin a web site to the tool and vice versa.
1 ScaZabiZity: the tool shall be scalable, i.e. the amount of indexed documents and RS4

RD3

RD4

I users should not be limited.
I Gathering: the tool shall be able to gather documents over a Microsoft NT RS5

search base (scheduled builds).
Interface style: it shall be possible to provide the user with a short description of
query matching documents and to modify the style of the interface.
Access rights: The tool shall be able to give a user only access to those files to
which he has access over the NT network.

I answered in less than a minute, re-indexing shall be possible over a weekend.
I Maintenance: the tool shall provide a mechanism to automatically update the RD2

Based on these results we decided after three weeks Clients were running Windows 98, Windows NT,
of tool evaluation to use Microsoft Site Server 3.0 or Windows NT Server. Furthermore a couple of
(MSS) as the tool to gather and publish our servers running Unix are connected and their file
environment, experience & knowledge documents, system can be accessed over the NT network from
to build the base for our experience management other non-Unix machines. The document sources
environment (EME). The network environment are summarized in Table 2.
(Intranet) was a Microsoft Windows NT network.

Document source
Mail Exchange Server

Project and department web
server

Local workstations

File types Information type
Mail format (exch) Folders for past and current

project information, technology
dlscussions, reuse items, etc.
Project documents ranging from
code to process descriptions,
general department information

Documents gathered for own
information purpose, document
drafts

HTML, Microsoft Office
documents (DOC, XLS, PPT),
Adobe Acrobat PDF, database files
(SQL, Access) like administration tasks
Microsoft Office documents
(DOC, XLS, PPT), Adobe Acrobat
PDF, HTML, plain text (TXT)

4. Analysis of Usage
The analysis step consisted of preliminary analysis
of the access log data to the web. The tool provided
us with the functionality to create usage reports. In
addition we conducted a survey on the benefits the
people observed while using it. In three months we
were able to implement the structures for the four
steps ‘collect’, ‘publish’, ‘integrate’, and ‘analyze’.
We were able to identify items for extension
activities (step ‘extend’) from these results and
from user feedback, which helped to focus on the
future.

The growth of our document search repository over
time was influenced by three factors:

includmg more document sources in a specific
catalog,
includmg more types of documents in a catalog
defiiition, and
the growth of experience & knowledge
documents in the environment over time.

The number of documents changed with every
build cycle for the catalogs. Numbers of gathered
documents in the search repository have been
documented and are shown in Figure 1, together
with the factor which mainly influenced the
growth. Here we see a significant growth in
documents available after a relatively short period
of time.

Figure 1. Growth of Documents in the Search
Repository

Figure 2 shows the growth of the mail repository
which results largely from daily work. The figure
shows that in the last four weeks of the project the
growth in the mail repository was 1,800 new
documents. This is not to say that every added
document is indeed useful as a reusable experience,
but it indlcates that daily work items were
documented and shared.

Figure 2 Growth of documents in the
mail repository

In figure 3 we show the use of the repository over a
seven week period. This figure shows that, in the
early stages, people became more and more aware
of the repository and more people tested the
repository with their personal information needs
(peak in the third bar). After that the usage
frequency was lower, more stable and continuous,

Figure 3. Usage of the Search Repository
per week

indicating possible acceptance. In this figure, a
visit is defiied as a series of consecutive requests
from a user to an Internet site and a request is a
successful connection to an Internet site, i.e.
retrieving contents. The graph shows the
dlstribution of the number of different users
visiting the web site as a percent of total visits over
the period.

Figure 4 shows the average number of queries
entered per visit per week. The number is low at
the beginning. People were testing the repository
with an average of one query, presumably to see
the behavior and the functionality. Later the people
seem to search more seriously for information.
Further information provided to the department
about the intent and use of the search repository
probably caused the high increase at the end. The

Figure 4. Average search queries per
visit

combination of figures 3 and 4 is interesting. It
shows that number of visits seems to be stabilizing
but that the number of queries per visit is
increasing. This demonstrates a relatively efficient
usage pattern.

The more popular search queries entered during the
last 8 weeks of the project were basically a binary
classification of technology issues and process
issues. The technology issues include ActiveX and
XML. The process issues were classified as
“process” in general and “estimation process”. The
data indicates a large diversity of information needs
in the organizational environment. The repository
was able to give back possibly useful documents
for most queries. However we do not have any
information to indicate whether the returned
documents were useful or not.

Some queries dld not return documents since the
repository contained insufficient documents, for
example new technologies like the XML language.
As with the usage report, we need to be careful
with the query data because it is only initial data
from a short period of use.

The reports, although only initial, provide some
preliminary indications.

The acceptance, i.e. usage of the repository
was promising.
The usage frequency indicates a degree of
integration into the daily information search
activities.

0 The information which was needed in the
department covers a very wide range of areas.
Process and new technology information
seems to be of special interest.
Informing people about the presence and the
usefulness of the concept is important.

These were the initial conclusions from the limited
data available. Surveying the repository users then
extended these.

Survey about usage benefits
To get duect user feedback we decided to conduct
an informal survey of staff impressions while using
the search engine, ideas the users had, and the
benefits realized through being able to search the
local environment documents. Overall the
acceptance and judgement of the product was good.
The feedback ranged from ideas for extension,
descriptions of how people used the repository, to
first impressions. The following points capture the
most common critical aspects, benefits, and
extension ideas gained from the survey.

We found that the people who had been working in
the department for a long time knew where
information could be found without using the
repository (e.g. document templates or whom to
ask to get information). The opportunity for this
will reduce as the department grows. We would
then predict that the repository could play a
stronger role in information transfer.

The benefits that were noted included comment
that the search web site is a good address for new
employees who are not familiar with the work
environment. People also reported that they found
documents and information that had been lost. The
average time saved through this was estimated to
be in a range of 1 to 4 hours. The search engine
also reportedly breaks down information barriers
between projects and environments (sharing
experience & knowledge). It was seen as a good
thing to first search for local information and
experience before proceeding.

6. Conclusions
At the end of our implementation of cycle #1 we
assessed which of our initial expectations for the
defiied approach were met. Earlier we described
our expectations, which we now examine. The time
our experience management environment (EME)
was usable was 8 weeks and hence the underlying
data has to be viewed carefully and further trends
have to be monitored to prove the findings.

Our experience is that we generally achieved the
technical objectives. In this respect the project was
successful. We are relatively confident that the
experience management environment could help
support improvement in this environment. The
data that was available at this time was too
preliminary to justify strong conclusions about
usage of the experience base. The usage pattems
indicated a trend towards consistent use and
integration into the work cycle. The project proved
the viability of the bottom-up approach selected in
this organization. Whether this will apply in other
organizations clearly depends on many factors. We
have outlined what we believe these factors to be.

They range from broad organizational and cultural
characteristics to technology characteristics. The
most important evidence, we believe, is the clear
establishment of a substantial experience base in an
organizational setting in a short time period, which
showed indications of successful deployment.

So what went wrong? Surprisingly, given the
positive comments by the users, the system was
decommissioned shortly after the completion of the
project. A major contributor to this was the lack of
ongoing management commitment to the project.
While a senior manager was the initial champion of
the project, its implementation was assigned to a
busy project leader. In retrospect greater emphasis
should have been placed on ensuring that the
project champion maintained a more visible
presence with respect to the experience factory
project. A second issue was the lack of
identification of clear goals and payback criteria for
the project. It appears that, although technology
can support this type of experience base
development, a top down GQM-based
methodology has the characteristics that are more
likely to ensure longer-term success. The third
observation was that the close physical proximity
of the development teams and the relatively small
number of personnel worked against the need for a
more formal repository-based experience factory.
The metrics success factors documented by Jeffery
and Berry in [9] might provide an indicator of
factors relevant to EF success as well. For example
they list senior management commitment, realistic
assessment of payback, clear responsibilities,
determination of required granularity among many
others. The issue of physical proximity has been
observed by the authors in the context of electronic
conferencing as a major implementation issue.

7. References
[11 Birk A. and Tutz C., “Knowledge Management

of Software Engineering Lessons
Learned”, Fraunhofer IESE-Report No.
002.98/E, July, 1998

[2] Basili V., Caldiera G. and Rombach D., “The
Experience Factory”, in Marciniak J.J. ed.,
Encyclopedia of Sofhare Engineering,
John Wiley & Sons, 1994.

[3] PERFECT homepage, ESPRIT I11 project
sponsored by the CEC,
;
p

[4] Basili V., Caldiera G., McGarry F., Pajerski R.,
Page G. and Waligora S., “The Software
Engineering Laboratory ~ An Operational
Software Experience Factory”, Proc. of
the International Conference on Sofhvare
Engineering, Melb, May, 1992, pp.370-
381.

n

[5] Houdek F., Schneider K. and Wieser E.,
“Establishing Experience Factories at
Daimler Benz: An Experience Report,
IEEE, 1998, pp. 443-447.

[6] Basilli V. and Caldiera G., “Improve Software
Quality by reusing Knowledge and
Experience”, Sloan Management Review,
37(1), 1995, pp. 55-64

[7] Basili V. and McGarry F. “The Experience
Factory: How to Build and Run One”, 17“
International Conference on Software
Engineering, Seattle USA, 1995

[8] Feldmann R. and Vonvieger S., “The web-
based Interface to the SFB 501 Experience
Base”, SFB 50 1 Bericht 0 1/9 1, University
of Kaiserslautern, 199 1.

[9] Jeffery, R. and Berry, M. “A Framework for
Evaluation and Prediction of Metrics
Program Success”, in Applying Software
Metrics, edlted by Paul Oman and Shari
Lawrence Pfleeger, IEEE Computer
Society, 1997, pp. 266-277.

An Experience Management System
for a Software Consulting Organization

Carolyn Seamant* Manoel Mendongas* Victor Basilis* Yong-Mi Kim8
cseaman@umbc.edu manoel@cs.umd.edu basili@fc-md.umd.edu yong-mi.kim@q-labs.com

University of Maryland at
College Park

*Fraunhofer Center for
Exp erim en ta 1 Software Engineering

University of Maryland at
Baltimore County

Q-La bs, Inc.

1 Introduction
Software is a major expense for most organizations and is on the critical path to almost all organizational
activities. Individual software development organizations in general strive to develop higher quality
systems at a lower cost for both their internal and external customers. Yet the processes used to develop
such software are still very primitive in the way that experience is incorporated. Learning is often from
scratch, and each new development team has to relearn the mistakes of its predecessors. Reuse of an
organization’s own products, processes, and experience is becoming more accepted as a feasible solution to
this problem. But implementation of the idea, in most cases, has not gone beyond reuse of small-scale code
components in very specific, well-defined, situations. True learning within a software development
organization requires that organizational experiences, both technological and social, be analyzed and
synthesized so that members of the organization can learn from them and apply them to new problems.

Suppose, for example, that a member of a software development group is considering the use of a particular
software engineering technology on a forthcoming project. This member has heard that this technology has
been used successhlly in other projects in some other part of the organization, but cannot easily find out
where or by whom. He or she would like very much to learn from the experiences of those previous
projects, first to help make the decision to use the technology or not, then to help implement the technology
in the current project. It would be helpful, obviously, to avoid the inevitable mistakes that are made the
fiist time a new technology is tried. Also, it would be useful to see the costs of using that technology (e.g.
the costs of new tools or training) in order to help estimate those costs for the current project. Without the
organizational infrastructure to support access to previous experience from within the organization, this
type of information would be very difficult, if not impossible, for the development team member to get.

This paper describes a system for supporting experience management in a multinational software
improvement consultancy called Q-Labs. This Experience Management System (EMS) is based on the
Experience Factory concept [11 proposed by Basili. This paper focuses on describing the design principles
behind EMS and reports the results of an evaluation of its interface.

2 The Experience Factory
Basili proposed the Experience Factory as an organizational infrastructure to produce, store, and reuse
experiences gained in a software development organization [1,2,3]. The Experience Factory idea organizes
a software development enterprise into two distinct organizations, each specializing in its own primary
goals. The Project Organization focuses on delivering the software product and the Experience Factory
focuses on learning from experience and improving software development practice in the organization.
Although the roles of the Project Organization and the Experience Factory are separate, they interact to
support each other’s objectives. As illustrated in Figure 1, the feedback between the two parts of the
organization flows along well-defined channels for specific purposes. Also, the Experience Factory

mailto:cseaman@umbc.edu
mailto:manoel@cs.umd.edu
mailto:basili@fc-md.umd.edu
mailto:yong-mi.kim@q-labs.com

supports the meta process defiied by Basili’s Quality Improvement Paradigm (QIP) [6]. As shown in
Figure 1, for each new project: the problem at hand is characterized (l), goals are set (2), a suitable process
is chosen (3), the process is executed and measured (4), outputs are analyzed (5) , and lessons and products
are packaged and stored in the experience base for future reuse (6).

Experience Factories recognize that improving software processes and products requires: (1) continual
accumulation of evaluated and synthesized experiences in experience packages; (2) storage of the
experience packages in an integrated experience base accessible by different parts of the organization; and
(3) creation ofperspectives by which different parts of the organization can look at the same experience
base in different ways. Some examples of experience packages might be the results of a study investigating
competing design techniques, a software library that provides some general functionality, or a set of data on
the effort expended on several similar projects.

Pmjsct ~~~~~~~~~~~~

2. Set Goals

Execution
plans

I

Figure 1. Experience Factory structure

The Experience Factory concept has been implemented in a number of software development organizations
that have addressed the above questions in various ways (e.g. [4,5,9]). The Software Engineering
Laboratory (SEL) [4] is an example of an Experience Factory. The SEL Quality Improvement Paradigm
provides a practical method for facilitating product-based process improvement within a particular
organization. Because it directly ties process improvement to the products produced, it allows an
organization to optimize its process for the type of work that it does. Using this approach, the SEL has
reduced development costs by 60%, decreased error rates by 85%, and reduced cycle time by 20% over the
past 10 years. Establishing an Experience Factory, however, is a long-term endeavour requiring a great deal
of commitment on the part of both management and development staff. Implementing an Experience
Factory involves substantial up-front costs. It requires instilling a new philosophy of learning into an
organization, establishing an organizational structure and processes for the Experience Factory to collect,
package and share experiences. Once in place, it will also require substantial ongoing effort and
commitment to maintain itself as an effective agent for continuous software process improvement.

We believe that emerging computing technologies ~ such as distributed systems, visual query interfaces,
and intranets ~ offer great potential to support the establishment and maintenance of Experience Factories
in organizations. This paper reports preliminary results and experiments from a research project aimed at
implementing a system for supporting an Experience Factory within an industrial setting.

3 The Principles Behind the Experience Management System
We have found it useful to discuss the problem of software experience capture and reuse, and our approach
to addressing it, in terms of the 3-layer conceptual view shown in Figure 2. This view shows three aspects
of the problem, all of which need to be addressed before a complete solution can be implemented. At the
lowest level, there are issues of how experience should be electronically stored in a repository and made
accessible across geographical boundaries. The middle level deals with user interface issues, including
how experiences are best presented to a user and how the user interacts with the automated system to

manipulate, search, and retrieve experience. At the top level, the organizational issues of how experience
reuse will f i t into the work of the organization, how the experience base will be updated and maintained,
and how experiences will be analyzed and synthesized over time, are addressed. The bottom two levels of
Figure 2 defiie the computer-intensive support pictured in Figure 1. The top level of Figure 2 defines the
interface between the human-intensive and the computer-intensive areas described in Figure 1.

Procedural Level Mamtalrung EF

Populatmg EF Updating EF Accessmg EF

Perspectives

User Interface Level V1ewpackages

Search Retrieve
about packages packages repositoly packages

I I

Experience Packages

I I I

Figure 2. The three levels of an Experience Management System

Allied with this conceptual view, we have defined a set of requirements aimed at making the EMS reliable,
easy to use, and flexible enough to support the Experience Factory concept.

R1. The system shall support geographically distributed organizations allowing them to share and

R2. The repository shall be robust, reliable, and portable to standard computer platforms.

R3. The user interface level shall be as platform independent as possible.

R4. The data model shall be simple but powerful enough to model diverse classes of “experience

manage experience packages remotely.

packages.” The system will adapt to the current practices, processes, and products of different
organizations, and not vice-versa.

R5. The system shall be easy to learn and self explanatory. The user interface shall be easy to use
and the stored information shall be easy to search and retrieve.

This conceptual view, along with the requirements, form the basis of several ongoing efforts to implement
experience management systems in a variety of settings. The fiist of these efforts, the Q-Labs EMS, is
described in this paper. Lessons learned from our work with Q-Labs will be fed into other EMS efforts in
the future.

4 The Q-Labs EMS
The Experimental Software Engineering Group (ESEG) at the University of Maryland and Q-Labs, Inc.,
have been working together for nearly three years on a project aimed at buildmg the infrastructure to
support a true Experience Factory within Q-Labs, resulting in an Experience Management System (from
here on called the “Q-Labs EMS”). Q-Labs is a multi-national software engineering consulting f i i that
specializes in helping its clients improve their software engineering practices by implementing state-of-the-
art technologies in their software development organizations. Q-Labs has helped many of its clients
implement some of the principles of the Experience Factory. Q-Labs’ objectives for this project have been
to provide a “virtual office” for the organization, which is spread across two continents, and to allow each
Q-Labs consultant to benefit from the experience of every other Q-Labs consultant.

4.1 System Architecture
In order to fulfill the first requirement presented in section 3, to support geographically distributed
organizations, the Q-Labs EMS is a client-server system. The clients enforce the policies defined at the
procedural level and implement the system front-end applications defined by the user interface level (here
referring to the levels in Figure 2). The server implements the system repository. The architecture of the
system is shown in Figure 3. It follows a three-tier model. At the top level, we have the EMS Manager and
EMS Visual Query Interface (VQI) applications. They work as client applications sending requests to a
“middle tier” of services. This “EMS Server” receives messages from the client applications and translates
them into low-level SQL (Standard Query Language) calls to an “EMS Repository.”

machine machine

I UI for a chosen
oersoectlve

I I I I I

EMsproprieta y
protocol

IP Network

I EMS Server I Server
Skzndard machine

Commercial D a t a b a s e

Figure 3. Q-Labs EMS architecture

In order to fulfill the second requirement, repository robustness and portability, the EMS Repository uses
standard database technology. It stores all the information necessary for the EMS operation in a relational
database managed by a commercial DBMS (Data Base Management System.) The link between the server
and the repository is done through standard embedded SQL (PL-SQL.) This makes the repository portable
to standard commercial DBMS, and virtually portable to any platform.

In order to fulfill the third requirement, a platform independent user interface, the client applications are
implemented in JavaTM. This makes them portable to any platform that has a Java virtual machine. To date
we have tested the client applications ~ EMS Manager and EMS VQI ~ on Unix, Windows (NT and 98),
and Macintosh platforms.

4.2 Data Model
An early, crucial task in this project has been identifying the pieces of information that should be packaged
as experience. However, each organization has different needs and experiences. In order to fulfill the
fourth requirement, data model simplicity and flexibility, we introduce the concept of a perspective. A
perspective defines a class of packages much like an object class in an object-oriented system. A
perspective is defined by three parts: a classification part, a relationship part, and a body part.

The classification part, called the perspective taxonomy, defines a classification model for the packages
instantiated from that perspective. The perspectives’ taxonomies describe the contents of an experience
base in an organization’s own terminology, thus guiding users intuitively towards the experiences of
interest to them. A taxonomy is composed of attributes with well-defined naming and typing. The
attributes effectively define the facets that can to be filled by an experience packager to characterize a
package instantiated in a given perspective.

The relationship part, called the perspective’s links, def ies the relationship between the packages
instantiated in this perspective and other packages in the experience base. Like attributes, links have a name
and type associated with them.

The perspective body defines the elements that compose the experience packages instantiated from this
perspective. Like attributes and links, elements have names and types. The type is usually a file or a list of
files. Those files are internally stored in the experience base as large objects when a package is instantiated
from a perspective.

4.3 Visual Query Interface
In order to fulfill the fifth requirement, a search and retrieval interface that is easy to learn and self-
explanatory, we adopted a visual query interface (VQI) concept. As proposed by Shneiderman [131, visual
query interfaces let users “fly through” stored information by adjusting widgets and viewing animated
results in the computer screen. In EMS, they allow easy interactive querying of the repository based on
various attributes of the experience packages. Built in to the interface is the set of attributes defined for the
perspective currently being viewed. Figure 5 shows the user interface for the Q-Labs EMS. Upon login a
user will have a set of perspectives from which he/she can look at stored experience packages. A user will
fiie a VQI by selecting one of those perspectives. The VQI will display the packages that are associated
with this perspective together with the attributes and query devices (slider bars, check boxes, etc.) used to
search and browse those packages. The widgets used on the interface are defiied on the fly based on the
data types and number of dlfferent values associated with each attribute.

Using the VQI, the user interactively searches the experience packages associated with a certain
perspective by manipulating the widgets on the right and observing the number of selected packages on the
two-dimensional chart. Once a small subset of packages is selected using the VQI query devices, the user
can quickly examine specific packages by clicking on them. This will fiie a Web Page with a complete
description of the selected package, including its links and elements. If the selected package corresponds to
the user’s expectations, he/she can click on the desired elements to retrieve the package’s files.

The VQI has two features that we believe are fundamental to EMS. First, its search is interactive and
controlled by the user. This allow the user to easily control the number of matches by widening or
narrowing the search scope with a few mouse clicks. This is a clear advantage over keyword-based search ~

such as those executed by Worldwide Web search engines. We hypothesize that this significantly helps
users to fiid packages that are useful to them even when an exact match is not available. The second key
feature of this type of interface is that it allows people to visualize the amount of stored experience and the
classification schema used by the organization. We believe that this significantly helps new users to get
used to EMS and is also an important learning medium for new team members.

Figure 4. Q-Labs Visual Query Interface (VQI)

The user interface also has hctionality to allow users to submit new experience packages to the
experience base. This functionality uses the attributes, links, and elements associated with the perspectives
to produce the forms that a user must complete to describe new packages.

5 Interface prototype evaluation
The first of several planned empirical studies to evaluate the Q-Labs EMS prototypes was an evaluation of
the interface. This initial prototype consisted of the VQI (pictured in Figure 5) , a simple data entry interface
used to submit experience packages (‘just a form with each field corresponding to one of the defiied
attributes for a given perspective), and a small repository populated with a collection of real Q-Labs
documents and project descriptions. Two perspectives were also provided with this prototype. The
documents perspective used attributes of documents (e.g. author, date, title, etc.) as the search mechanisms,
while the projects perspective used attributes of projects (e.g. project lead, customer, start date, finish date,
total effort, etc.). Some attributes were common to both perspectives (e.g. technical area). The evaluation
was carried out at this point in the project (before having a full working system) because it was essential to
get user feedback on the basic paradigms we had chosen before we proceeded further.

5.1 Study design
The interface evaluation study was based on qualitative methods [101. The importance of such methods in
validating software engineering technology is discussed by Seaman in [12]. The goals of the interface
evaluation study were:

1.

2.

3.

To evaluate the current set of attributes (in both the “projects” and “documents” taxonomies) in
terms of completeness, usefulness, and clarity.
To evaluate the visual query search and retrieval interface in terms of usefulness, usability, and
appropriateness.
To evaluate the data entry interface in terms of feasibility, usability, and impact on working
procedures.

These goals were refiied into a set of questions that guided the design of the study. To answer these
questions, two types of data were collected. The first data source consisted of detailed notes concerning
how the subjects used the prototype and the comments they made while using it. The second data source
came from a set of interviews that were conducted at the end of each evaluation session. The questions
asked during the interviews are shown below in Figure 5 .

1.
2.
3.
4.
5.
6.
7.
8.
9.
10. Do you think you would use this tool, once the database was populated, in your everyday work? Does it support the way

1 1. What did you like most about the data entry interface?
12. Was there anything really annoying about using it?
13. Were there any parts of the data entry interface where it wasn’t clear what information you should enter?
14. How was using this interface different from the usual procedure for recording this type of information? Do you think, in

15. How could the interface be improved?
16. Do the different parts of the system have consistent appearance and work in similar ways?
17. How satisfied are you with the system appearance in terms of color, layout, and graphics usage?

What did you like most about the search and retrieval interface?
Was there anything really annoying about using it?
Was it easy to move around and do things with the mouse and keyboard?
Is there any information that would be useful to include in the interface that isn’t there?
Are there any attributes that are not clear in their meaning?
What attributes did you use most in searches?
Did you feel that you were able to fmd what you were looking for using the interface?
How satisfied are you that tasks can be completed with the minimal number of steps?
How could the interface be improved?

you normally work?

general, that this would save you time or not?

Figure 5 . Evaluation Interview Questions

Interface evaluation sessions were held with five dlfferent Q-Labs consultants from three different offices
in May and June of 1999. In each session, the subject was given a short hands-on training, then given a set
of exercises that represented common Q-Labs work scenarios. The exercises were taken from the set of use
cases we had collected as part of the initial requirements gathering activity for EMS. The subjects were
asked to choose some of the exercises and then to use the Q-Labs EMS prototype to gain information

relevant to the scenario described in each exercise. They were also asked to verbalize their thoughts and
motivations while working through the exercises. This technique, called a “think aloud” protocol [SI, is
often used in usability studies (and occasionally in other software engineering studles [141) to capture a
subject’s immediate impressions, thought processes, and motivations while performing a task. The subjects
could and dld ask questions of the researcher conducting the session. After several exercises had been
completed, a short interview was conducted, using the questions presented above as an interview guide.
All the sessions were audiotaped and observed by at least one researcher. Each session lasted about 1.5 to 2
hours. Although the tapes were not transcribed verbatim, they were used to write very detailed notes after
the fact.

The notes written from the tapes served as the major data source for the analysis part of the study. The
analysis method used was the constant comparison method [7,10]. This method begins with coding the
field notes by attaching codes, or labels, to pieces of text that are relevant to a particular theme or idea that
is of interest in the study. Then passages of text are grouped into patterns according to the codes and
subcodes they’ve been assigned. These groupings are examined for underlying themes and explanations of
phenomena. The next step is the writing of a field memo that articulates a proposition (a preliminary
hypothesis to be considered) or an observation synthesized from the coded data. In this case, the field
memo written as part of this process became the results of the study, which are reported in the next section.

5.2 Results
The subjects generally liked the basic elements of the search and retrieval interface. In particular, they
seemed to have no trouble mastering the search mechanism and liked how it was easy to negotiate the
interface and see the dlstribution of packages among different attribute values. They also liked the
immedlate feedback in the graph part of the interface in response to changes made with the search
mechanisms. Subjects were also able to glean useful information from the interface even when they
couldn’t find exactly what they were looking for. For example, one subject found a document that was not
exactly what she wanted, but she saw the primary author’s name and decided that would be a good contact,
and so she felt she had found useful information.

The learning curve on the search and retrieval interface was fairly short. By the second or third exercise
tried, all of the subjects were conducting their searches very rapidly and confidently. For some subjects, it
was even quicker. Subjects generally narrowed their searches down to about 2-4 “hits” before looking at
individual packages. This was seen as a “reasonable” number of packages to look through.

Several major annoyances surfaced during the evaluation. One was the use of slider bars. Several subjects
had trouble figuring out the mechanics of using and interpreting them. Several subjects suggested using
some form of checkboxes instead of the slider bars. Another annoyance had to do with the relationship
between the two perspectives and the lack of linkage between them. After finding some relevant project in
the projects perspective, subjects had to then start up the document perspective and start a search from
scratch in order to find documents related to the project. A related problem was the confusion caused by
some attributes and attribute values existing in one perspective but not the other.

As for the data entry interface, the data being collected was seen to be appropriate, but otherwise it left a lot
to be desired. Subjects in general found the data entry interface unusable because they needed more
guidance as to what attribute values to enter in the fields. Almost all of the subjects suggested pull-down
menus or automatic fill-ins to decrease the amount of typing and increase consistency. In general, the
subjects saw this interface as just a skeleton of what was needed.

All of this was valuable feedback that has been used in our plans for further development of the Q-Labs
EMS. Although we knew that the interface we were evaluating was not ideal, we had not anticipated some
of the specific problems that our subjects reported. For example, we had not considered the slider bar
mechanism to be a problem, but our subjects defiiitely did. Also, although we knew the data entry
interface needed some improvements (many of the suggestions from the subjects were already in our
development plans), we had not considered it as completely unusable as our subjects dld. On the other
hand, the study validated some of our basic choices in the interface design, e.g. the VQI and the use of
attributes and perspectives. Thus we can, with confidence, continue improvement of the interface without
changing the underlying structure.

There were also some lessons learned about how the interface evaluation was conducted. Some problems
came up related to the limited scope of the repository. Subjects were sometimes fi-ustrated when there was
nothing to be found for their search criteria. Subjects were also bothered by inconsistencies in the sample
data. In particular, one subject found that there was a document in the documents perspective, that had a
project name associated with it, but that project was not to be found in the projects perspective.

The interface evaluation, in general, proved to be a valuable and timely tool for getting feedback from the
eventual users of the Q-Labs EMS. The effort involved was relatively small, although fiiding and
scheduling subjects was difficult and caused some delays. Although much remains to be done before an
operational system is delivered, the evaluation assured us that the Q-Labs EMS will eventually be
acceptable to its intended users. In addition, the evaluation provided an opportunity to disseminate the
aims of our project, and our work thus far, throughout Q-Labs.

6 Conclusions
We have described an ongoing project involving the Experimental Software Engineering Group (ESEG) at
the University of Maryland and Q-Labs, Inc. that aims to provide a system (with both organizational and
automated elements) to support software engineering experience capture and reuse. The current design of
this system, called the Q-Labs EMS, is outlined, in particular its architecture and its user interface.
Currently, an interface prototype exists and has been evaluated. This evaluation is described in detail. The
results of the evaluation have assured us not only that the Q-Labs EMS will eventually be successfully
deployed throughout Q-Labs, but will also serve as a testbed for our further investigation of software
experience capture and reuse. However, much needs to be done before a working version of this system is
in place. The prototype that has been evaluated encompassed only some of the automated features of the
system. Much of the technical work remains, as well as the organizational part of the system. The latter
includes designing, implementing, and evaluating new organizational procedures and deployment strategies
to ensure the acceptance of EMS at Q-Labs.

7 References
[11 Basili, Victor R. Software Development: A Paradigm for the Future. In Proc. of COMPSAC ‘89,

Orlando, Florida, pp. 471-485, September 1989.
[2] Basili, Victor R., and Gianluigi Caldiera, Improve Software Quality by Reusing Knowledge and

Experience. Sloan Management Review, MIT Press, Volume 37, Number 1, Fall 1995.
[3] Basili, Victor R., Gianluigi Caldiera, and H. Dieter Rombach. The Experience Factory. In

Encyclopedia of Sofhare Engineering, New York: John Wiley & Sons, 1994. pp. 470-476.
[4] Basili, Victor R., Gianluigi Caldiera, Frank McGarry, Rose Pajerski, G. Page, and S. Waligora. The

Software Engineering Laboratory - an Operational Software Experience Factory. In Proceedings of the
International Conference on Software Engineering, May 1992, pp. 370-38 1.

[5] Basili, Victor, Michael K. Daskalantonakis, and Robert H. Yacobellis. Technology Transfer at
Motorola. IEEE Sofhare, March 1994, pp. 70-76.

[6] Basili, Victor, and H. Dieter Rombach. The TAME Project: Towards improvement-oriented software
environments. IEEE Transactions on Software Engineering, 14(6):758-773, June 1988.

[7] B.G. Glaser and A.L. Strauss. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company, 1967.

[SI J.T. Hackos and J.D. Redish. User and Task Analysis for Interface Design. New York:John Wiley and
Sons, 1998, chapter 9, pp. 258-9.

[9] Houdek, F., K. Schneider, and E. Wieser (April 1998). Establishing Experience Factories at Daimler-
Benz: An Experience Report. In Proc. of 20th International Conference on Sofhare Engineering,
Kyoto, Japan, pp. 443-447.

[101 M.B. Miles and A.M. Huberman. Qualitative Data Analysis: An Expanded Sourcebook, second
edition, Thousand Oaks:Sage, 1994.

[111 Prieto-Diaz, R. Classifying of Reusable Modules. In T.J. Biggerstaff and A. Perlis, editors, Software
Reusability, Volume I, ACM Press, 1990.

[121 Seaman, C.B. Qualitative Methods in Empirical Studies of Software Engineering. IEEE Transactions
on Software Engineering, 25(4):557-572, July/August 1999.

[131 Shneiderman, Ben. Dynamic Queries for Visual Information Seeking. IEEE Software, Vol. 6, No. 1 1,

[141 A. von Mayrhauser, and A.M. Vans. Identification of dynamic comprehension processes during large
November 1994, pp 70-77.

scale maintenance” IEEE Transactions on Software Engineering, 22(6):424-437, June 1996.

Session 6: Panel Discussion

SEW Proceedings

Lee Holcomb, NASNCIO

Jerry Page, Computer Sciences Corporation

Mike Evangelist, National Science Foundation

SEL-99-002

Session 7: Inspections

SEW Proceedings

Edward Weller, Bull HN Information Systems

A1 Florence, MITRE

Amarjit Singh Marjara, Cap Gemini AS

SEL-99-002

24th Annual Software Engineering Workshop
Dec 1-2, Goddard Space Flight Center

Quantitative Methods Do Work

Edward F. Weller
Fellow, Software Process

Bull HN Information Systems
13430 N. Black Canyon

Phoenix, AZ 85029

Tele: (602) 862-4563
Fax: (602) 862-4288
e-Mail: e .wellerabull. com

0 Bull, 1999 1

Quantitative Methods Do Work

Quantitative methods, including statistical process control, can be effective tools for
predicting and evaluating product quality during development and test. The data analysis
and conclusions from applications of quantitative methods, including statistical process
control, to two projects that were major components of a software release to Bull HN
Information System’s GCOS 8 Operating System, will show how these techniques were
effective and useful. During development and test, we used the release quality predictions
as one of the project metrics. We found that analysis of inspection and test results using
SPC techniques helped us predict (perhaps understand is a better word) the release
quality and the development processes controlling the release quality. We were able to
answer the question “Can we ship this product?” with data rather than guesswork.

Inspections have been used in GCOS 8 development since 1 9901. The process is stable
and provides data used by project management’. Our goal in the current release was to
use defect density during development and test as input to predicting the post ship
product quality with reasonable assurance. We are aware of the problems with using
defects to predict failures (Adams3, Fenton and Pfleegeq), but in the absence of other
data or usage based testing results, this was what we had to evaluate release quality.

Prediction: Stable versus Unstable Processes
Predicting the future behavior of a process cannot be done unless the process itself is
stable. This is a reason for using statistical methods. A variety of techniques can be used
to evaluate the underlying process stability. Control charts can be used to calculate upper
and lower control limits (UCL and LCL). Processes that stay within limits and do not
exhibit other indications of lack of control can be assumed to be “controlled processes”.
This implies several things about the process:

Past performance can be used to predict future performance within the control
limits
Process capability relative to a customer specification can be determined

Estimating Defect Injection
Previous inspection process and product data were evaluated and estimates were made
for:

Defect injection rates

Defects entering unit test
Defect removal rates (inspection effectiveness’)

Prior inspection, test, and post ship defect history was used to estimate the defect
injection rate. This is a potential area for applying SPC. With enough data, you can
establish ranges for defect injection rates, accuracy of size estimates, and inspection

Inspection effectiveness is the percentage of major defects removed in each inspection phase, or total
defects removed in inspections, divided by the total number of defects in the product at the time of the
inspection. Since the total number of defects discovered is never known until a product is retired from use,
effectiveness is always an estimate, but one that changes very slightly after a product is shipped, assuming
reasonable post ship quality levels.

I

0 Bull, 1999 2

removal effectiveness. For these projects we did not have sufficient data samples to do
this, so we based our estimates on specific product and project history.

The size, defect injection rates, and prior inspection data were used to develop a defect
injection and removal profile.

700 '
I 3 400 I /

/ -
E

300

200

100

0

I Ana HLD LLD Code

Phase Phase In
Est

n Phase Expectei
Removal

-+ Cumul In] Est

- -+ - Cumul Expectei
~ Removal

Figure 1 - Initial Defect Injection and Removal Estimate

Inspection Data Analysis
On these two projects the first opportunity to apply SPC was during code inspections. On
one project, the work was divided into two parts; the creation of a product feature, and
the revision of existing code. A histogram of preparation rates in lines of code per hour is
shown in Figure 2.

16
14
12
10
8
6
4
2
0

50 100 150 200 250 300 350 400 More

Figure 2 - Preparation Rate Histogram
Outliers were examined and eliminated when special causes of variation were discovered.
I also compared the preparation rate distribution to the inspection rate, shown in Figure 3.

0 Bull, 1999 3

6
5
4
3
2
1
0

50 100 150 200 250 300 350 400 More

Figure 3 - Inspection Rates for 30 inspections
This bimodal distribution was caused by two types of code, “new”, and changed. Figure
4 shows these 2 classes separately.

New Changed

5 5 5

Figure 4 - New vs Changed Inspection Rates
I expect new code inspections to be “better behaved’ than changes to existing code.
(Many inspections of modified code are small in size, causing preparation and inspection
rates to have a larger variance. Knowledge of the changed (old) code inspected may also
have a wider variance than the new code). The separate views in Figure 4 are typical of
much of the inspection data I investigate. The new code approximates a normal
distribution as closely as you may see with real data.

A control chart for this data with special causes removed showed a well controlled
process:

600.0

400.0

200.0

0.0

+ Prep Rats

--s- Prep UCL

+ Ave

1 3 5 7 9 1 1 1 3 1 5

Figure 5 - Preparation Rate with Outliers Removed

0 Bull, 1999 4

1 +def/SLOC - Def UCL 1

Q) n
0.05

0.00
- b b o m a " L D C o

- - - - " N

Inspection Number

Figure 6 - Defect Density Control Chart"

What have we learned about this product and its contribution to the system release? With
two exceptions, the inspection process seems to be well controlled. The outliers were
investigated (as were other inspection meetings) to understand how well the inspection
process was performed. In this case, the outliers were for inspections of changed code, so
these outliers were evaluated as caused an assignable cause, and the defect data was
within control limits.

Once we were reasonably confident the inspection process was controlled, we developed
defect depletion curves for the projects and the system release.

700

600

I 3 400 500
0 e fi 300

200

100

0

I Ana HLD LLD Code

I Phase Phase Inj Est

0 Phase Phase Expected

0 Phase Phase Actual

*Cumul Actual Removal

Removal

Removal

1 - x m Cumul Expected Remov:

Figure 7 - Defect Depletion at End of Code Inspection

The lower control limits cannot be less than zero, although for convenience the LCL was plotted on this
chart as calculated. Once you verify the data is above the LCL, for possible values of LCL, it is probably
better to delete this line from the chart.

I1

0 Bull, 1999 5

700

600

500

6 400

e
300

200

100

0
Ana HLD LLD Code

Phase Rase Inj Est

Phase Rase Expected
Removal

0 Phase Rase Actual

-Cumul Actual Removal

Removal

I -x- I Cumul Expected Remov;

-e- Cumul Inj Est

Figure 8 - Replotted Defect Depletion with New Size Estimate

Unit and Integration Test
Both projects kept accurate records of defects found during Unit and Integration test.
Both projects developed test objective matrices and developed test plans and
specifications, so we had some expectation to remove defects more effectively than the
30-50% “norm” often quoted in the industry.

300

200

100

0
Ana HLO LLO Code L1 PL2 RL2 L3 Beta ESIGS

Figure 9 - Project One Defect Depletion

Figure 9 shows project one, as it was about to enter System Test (this chart is used in our
monthly project review as well as the weekly team meetings). It shows the re-estimate for
the number of defects injected. Note the defect removal in Unit Test was higher than
estimated and that subsequently in the two phases of Integration Test a small number of
defects were removed. Without accurate defect removal data from Unit Test these low
numbers would be of more concern with respect to product quality. The Current Timeline
is indicated to show the furthest stage where the project defect removal is happening.

This analysis continued through System Test as shown in Figure 10.

0 Bull, 1999 6

lnt-2 Test

d--

0 Build 3 Actual D M a i n t Actual

m e a m Est Defects Remaining _ _ _ Est Removal Rate (50%)
System Test FST

\ Adjusted for FW 917
XMTLcounts \

FISCAL WEEKS

Figure 10 - System Test
Conclusions
You should ask two questions about any metric or analysis technique:

Is it useful? Does it provide information that helps make decisions?
Is it useable? Can we reasonably collect the data and do the analysis?

We found that the knowledge we gained about product quality and the processes used to
develop these products gave a definite “Yes” to both these questions.

E.Weller, “Lessons Learned from 3 Years of Inspection Data”, IEEE Software, Sept 1993
E.Weller, “ Using Metrics to Manage Software Projects”, IEEE Computer, Sept 1994
E. Adams, “Optimizing Preventive Service of Software Products”, IBM Journal of Research &
Development, Jan 1984
N. Fenton and S. Pfleeger, Software Metrics, PWS Publishing Company, 1997, pp 344-348

1

2

3

4

0 Bull, 1999 7

m
7

0
7

a,
0
L

z
0
0 *
0
m
c'>

0
0
c'>

0
m cv

0
0 cv

0
m
7

0
0
7

0 m

m 0

I t

I t

I I l I

Q)
c1

2
S
0
0
Q)
Q
v)
S

.I

c1

-

Q)
c1

2
S
0
0
Q)
Q
v)
S

.I

c1

-

0 0 0 0 0 0
0 0 0 0 0
L o * m c v .

a -

0 m 0
7 0 0

0 m cv 7

0 0 0 0 0

82

22

22

61

91

€1

01

L

P

1

c

.-
Y

in
a,
0
L

a,
N
cn .-
a
d
r

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 3 ~ c o m * c y) N -

0 c
c
.-

a,
- O i co-

4'

SEI CMM Level 4 Quantitative Analysis
Real Project Examples

A1 Florence
December, 1999

MITRE Corporation

The views expressed are those of the author and do not reflect the official policy or position of
the MITRE Corporation

Key Words

Quantitative Process Management
Software Quality Management
Defect Prevention
Quantitative Analysis
Statistical Process Control
Control Charts

Abstract

The Software Engineering Institute's (SEI) Software (SW) Capability Maturity Model (CMM)
Level 4 Quantitative Analysis leads into SW-CMM Level 5 activities. Level 4 Software Quality
Management (SQM) Key Process Area (KPA) analysis, which focuses on product quality, feeds
the activities required to comply with Defect Prevention (DP) at Level 5.[1] Quantitative
Process Management (QPM) at Level 4 focuses on the process which leads to Technology
Change Management (TCM) and Process Change Management (PCM) at Level 5. At Level 3,
metrics are collected, analyzed and used to status development and to make corrections to
development efforts, as necessary. At Level 4, metrics are quantitatively analyzed to control
process performance of the project and to develop a quantitative understanding of the quality of
products to achieve specific quality goals. At Level 5 , the Level 4 analysis is used, as
appropriate, to investigate and incorporate new processes and technologies and for the
prevention of defects.

This paper presents the application of Statistical Process Control (SPC) in accomplishing the
intent of SQM and QPM and applying the results to DP. Real project results are used to
demonstrate the use of SPC as applied in a software setting. Presented are the processes that the
author formulated, launched and conducted on a large software development effort. The
organization had obtained SW-CMM Level 3 compliance and was pursuing Level 4 and Level 5.
All Level 4 and Level 5 processes were installed and conducted on the project over a period of
time. The main quantitative tool used was Statistical Process Control utilizing control charts.
The project analyzed life cycle metrics collected during development for requirements, design,
coding, integration, and during testing. Defects were collected during these life cycle phases and
were quantitatively analyzed using statistical methods. The intent was to use this analysis to
support the project in developing and delivering high quality products and at the same time using
the information to make improvements, as required, to the development process.

1

Introduction

This introduction presents an overview of SPC and why it is applied to software. It presents a
review of the Level 4 KPAs and Defect Prevention at Level 5. Next, Level 4 quality goals and
plans to meet those goals are described followed by some real project examples in applying SPC
to real project data.

Control Charts

Figure 1 shows a control chart and demonstrates how control charts are used for this analysis.[3]
According to the normal distribution, 99% of all normal random values lie within +/-3 standard
deviations from the norm, 3-sigma.[3] If a process is mature and under statistical process
control, all events should lie within the upper and lower control limits. If an event falls out of
the control limits the process is said to out of statistical process control and the reason for this
anomaly needs to be investigated for cause and the process brought back under control.

Determine Cause of Deviation

Upper Control Limit

3 Standard Deviations (+ 3 sigma)

I +I Center Line I I 3 Standard Deviations (- 3 sigma)
I + I I

Measurements I Lower Control Limit
Determine Cause of Deviation

Time b

Figure 1. Control Chart

Control charts are used because they separate signal from noise, so when anomalies occur they
can be recognized. They identify undesirable trends and point out fixable problems and potential
process improvements. Control charts show the capability of the process, so achievable goals
can be set. They provide evidence of process stability, which justifies predicting process
performance.

Control charts use two types of data: variables data and attributes data. Variables data are
usually measurements of continuous phenomena. Examples of variables data in software
settings are elapsed time, effort expanded, and memory/CPU utilization. Attributes data are
usually measurements of discrete phenomena such as number of defects, number of source
statements, and number of people. Most measurements in software used for SPC are attributes
data. It is important to use the correct data on a particular type of control chart.[3]

Quantitative Analysis Flow

Figure 2 shows the Level 4 Quantitative Analysis process flow for Software Quality
Management and for Quantitative Process Management. [11

2

m m Measures Per form W o r k in
Progress Tr aining/O r ient a t ion

Defects
Computer Resources

7
C o n d u c t

Quant i ta t ive P lans/G oals Analysis

Analysis Team
Management Anomaly

Lessons Other Reasons
L e a r n e d

P e r f o r m
T r a i n i n g / K i c k o f f

M e e t i n g

Project Management
Analysis Staff

w W o r k i n

I
A- - Pr og res s

PAT - Process Action Team
Figure 2. SQM and QPM Flow

When conducting quantitative analysis on project data the results can be used for both Software
Quality Management and for Quantitative Process Management. If the data analyzed are defects
detected, the intent is to reduce the defects during the activities that detected the defects
throughout development, thus satisfying SQM. When out of statistical control conditions occur,
the reason for the anomaly is investigated and the process brought back under control which
satisfies QPM.

Defect Prevention Flow

Figure 3 shows the Level 5 Defect Prevention process flow.[11

C o n d u c t
A n a l y s i s

(Q u a n t i t a t i v e or 0 th e r)
P r e v e n t ion L e s s o n s L e a r n e d

P l a n

Management Anomalv Or
Analysis Team ,, O t h e T k a s o n (s) ,

Figure 3. DP Flow
I C o n du ct

C a u sa l A n a l y s i s 1
I I

Analysis Team

3

Defects can occur during any life cycle activity against any and all entities. How often do we see
requirements that are without problems or schedules that are adequate or management that is
sound? Defect Prevention activities are conducted on any defects that warrant prevention.
Defect prevention techniques can be applied to a variety of items:

Project Plans
Project Schedules
Standards
Processes
Procedures
Project Resources
Requirements
Documentation
Quality Goals
Design
Code
Interfaces
TestPlans
Test Procedures
Technologies
Training
Management
Engineering

Level 4 Feeds Level 5

Figure 4 shows how data collection, analysis and management from Level 4 activities lead to the
activities at Level 5 of Defect Prevention, Technology Change Management, and Process
Change Management KPAs. [5]

Level 4 Level 5

Defect Prevention
Quantitative

Process Management

Software
Quality Management

Change Management

Figure 4. Level 4 and Level 5 Paths of Influence

Quantitative Process Management, which focuses on the process, leads to making process and
technology improvements while Software Quality Management, which focuses on quality, leads
to preventing defects.

4

Level 4 Goals and Plans

The CMM requires that Level 4 goals, and plans to meet those goals, be based on the processes
implemented, that is, on the processes’ proven ability to perform.[11 Goals and plans must also
reflect contract requirements. As the project’s process capabilities and/or contract requirements
change, the goals and plans may need to be adjusted.

The project that this paper is based on had the following key requirements:

Timing - subject search response in less than 2.8 seconds 98% of time
Availability - 99.86% 7 days, 24 hours (7/24)

These are driving requirements that constrain hardware and software architecture and design. To
satisfy these requirements, the system needs to be highly reliable and with sufficiently fast
hardware.

Goals

The planned quality goals are:

Deliver a near defect free system
Meet all critical computer performance goals

Plans

The plans to meet these goals are:

Defect detection and removal during
- Requirements peer reviews
- Design peer reviews
- Code peer reviews
- Unit tests
- Thread tests
- Integration and test
- Formal tests
Monitoring of critical computer resources
- General purpose million instructions per second (MIPS)
- Disc storage read inputs/outputs per second (IOPS) per volume
- Write IOPS per volume
- Operational availability
- Peak response time
- Server loading

Quantitative Analysis Examples

The following are real examples from the project discussed above applying SPC to real data over
a period of two years.

5

Example 1

Table 1 shows raw data collected at code peer reviews over a period of months. Each sample
represents a series of peer reviews over several weeks. The “units” are units of code and the
“SLOC” is the number of source lines of code (SLOC) review for that sample. The “defects” are
the number of defects detected for that sample normalized to 1000 lines of code in the last
column.

Table 1. Code Peer Review Defects

Sample
1.Mar 1998

Units SLOC Defects DefectdKSLOC
6 515 15 29.12

2.Apr 1998
3. Am 1998

319 9.40

10 614 16 26.06
7 573 7 12.22

ITotals 176 13582 172

Sample
1. Mar 1998

The formulas for constructing the control chart follow.[3] The control chart used is a U-chart.

Plot CL UCL LCL a(1)
29.13 20.1 38.84 1.36 0.515

Defects/KSLOC = Number of Defects * 1 OOO/SLOC reviewed per sample (calculated
for each sample). These are plotted as Plot.
CL = Total Number of DefecWTotal number of KSLOC reviewed * 1000
a(1) = SLOC reviewed/l000 (calculated for each sample)
UCL = CL+3(SQRT(CL/a(l)) (calculated for each sample)
LCL = CL-3(SQRT(CL/a(l)) (calculated for each sample)

2. Apr 1998
3. Apr 1998
4. Apr 1998

The defects per 1000 lines of code is the plot on the chart. The center line (CL) is an average
while a(1) is a variable calculated for each sample. The upper control limit (UCL) and the lower
control limit (LCL) are also calculated for each sample. The calculations are shown in Table 2.
Whenever the LCL is negative, it is set to zero.

26.06 20.1 37.27 2.96 0.614
12.22 20.1 37.87 2.333 0.573
22.96 20.0 44.45 0 0.305

Table 2. Calculations for Code Peer Review Defects

5. Apr 1998
6. Am 1998

60 20.1 42.84 0 0.35
9.76 20.1 49.80 0 0.205

7. Apr 1998
8. Mav 1998

15.71 20.1 36.16 4.04 0.701
9.40 20.1 43.91 0 0.319

6

The control chart is shown in Figure 5.

0 a.. @ 0 0 & :: x x x x x

X A ,

--e-- Plot

+ CL

--r& UCL
.... 5< LCL

0 2 4 6 8 10

Figure 5. Control Chart for Code Peer Review Defects

An anomaly occurred in the fifth sample. Causal analysis revealed that data for that sample were
for database code, all others were applications code. Control charts require similar data for
similar processes, i.e., apples to apples analogy. The database sample was removed and the data
charted again as shown in Figure 6.

60

50

40

30

20

10

0
2 4 6 8 I o

-+- Plot

-.-s-- CL

& UCL

x LCL

Figure 6. Control Chart without Database Defects

The process in now under statistical process control. The root cause is that data gathered from
dissimilar activities cannot be used on the same statistical process on control charts. Data from
design cannot be combined with data from coding. The process for database design and code is
different from that used for applications design and code as are the teams and methodologies.
The defect prevention is against the process of collecting data for SPC control charts.

7

Example 2

5. Mar 1997
6. Am 1997

Table 3 shows raw data collected during code peer reviews.

17 1687 78 46.24
18 1843 66 35.81

Table 3. Code Peer Review Defects

36.36
2. Mar 1997 36.70
3. Mar 1997 1476 65.04
4. Mar 1997 57 29.61

ITotals I 1041 104341 4251

The calculations are shown in Table 4.

Table 4. Calculations for Code Peer Review Defects

The control chart is shown in Figure 7.

-@-Plot

-.-E&-- CL

+UCL

+LCL

1 . Feb 2. Mar 3. Mar 4. Mar 5 . Mar 6 .Apr

1997 1997 1997 1997 1997 1997

Figure 7. Control Chart for Code Peer Review Defects

The process is out of statistical process control in the third event. Causal analysis revealed that
this was caused when the project introduced coding standards and many coding violations were

8

injected. The root cause is lack of knowledge of the coding standards and the defect prevention
is to provide training whenever a new process or technology is introduced.

Example 3

During integration thread tests, the defects were categorized against the test plan, test data, code
logic, interfaces, standards, design, and requirements. Defects against these attributes are shown
in Table 5.

Table 5. Thread Test's Defects

Bar chars were used in Figure 8 to show defects discovered during integration thread tests.

Totals
120
100
80
60
40
20

0

Figure 8. Thread Test Defects Bar Chart

9

Test data would not be expected to have the majority of defect. The root cause was that the test
data in the test procedures had not been peer reviewed. The defect prevention is to peer review
the test procedures and the test data.

Example 4

During preliminary design and prior to acquiring hardware, a simulated performance model was
used to monitor critical computer resources. Figure 9 shows some results of monitoring general
purpose MIPS.

3000

2500

2000

I500
M I P S

IO00

500

0

- Estimated Usage
Available
Threshold

I I I I I

Mar-94 Sep-94 Apr-95 Oct-95 May-96 Dec-96 Jun-97

Date

Figure 9. General Purpose MIPS

Around November 1995 many new requirements were added to the system and the architecture’s
MIPS threshold was threatened because of increased computations. In May 1996 additional
MIPS were added to the hardware design and the problem was corrected.

Conclusion

Statistical process control and the use of control charts can be effectively used in a software
setting. SPC can identify undesirable trends and point out fixable problems and potential process
improvements. Control charts can show the capability of the process, so achievable goals can be
set. They can provide evidence of process stability, which can justify predicting process
performance.

10

References
and

Suggested Reading

1. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber, February 1993,
Capability Maturity Model for Software, V1.1, Software Engineering Institute

2. John H. Baumert, Mark S. McWhinney, 1992, Software Measures and the Capability
Maturity Model, Software Engineering Institute

3. William A. Florac, Robert E. Park, Anita D. Carleton, SEI, April, 1997, Practical Software
Measurement: Measuring for Process Management and Improvement, Software Engineering
Institute

4. Thomas Pyzdek, 1984, An SPC Primer, Quality America, Inc.
5. Ron Radice , 1997, Getting to Level 4 in the CMM, The 1997 SEI Software Engineering

Process Group Conference, San Jose, CA
6. Anita Carleton, Mark C. Paulk, 1997, Statistical Process Control for Software, The 1997

Software Engineering Symposium, Pittsburgh, PA
7. David S. Chambers & Donald J. Wheeler, 1995, Understanding Statistical Process Control,

SPC Press
8. Juran 's Quality Control Handbook, 1988,4th Edition, McGraw-Hill Book Company
9. Donald J. Wheeler, 1993, Understanding Variation, The Key to Managing Chaos, SPC Press
10. Donald J. Wheeler, 1995, Advanced Topics in Statistical Process Control, SPC Press
1 1. W. Edwards Deming, November 1975, On Probability As a Basis For Action, The American

12. Gerald J. Hahn & William Q. Meeker, February 1993, Assumptions for Statistical Inference,

13. Watts S . Humphrey, September 1997, Managing the Software Process, SEI Series in

Statistician, Vol. 29, No.4 (146-152)

The American Statistician, Vol. 47, No. 1 (1 - 1 1)

Software Engineering, Addison-Wesley Publishing Company

11

a,
5
rcc
0

a
0 cr
k
0

r"

q j Q)
Q) "

*m = 'E

H
Q)
k

E
G
0

m
*m

I a
E Q)

Q)
Lc
0

z
El

F1
0
'3
-c, '3
m
0 a
t-
0
h
0
.d
i

0 a
3

'3
6
0

0
a,
5
U

a,
0
m

5

n

E
n

E
Q m
J

c,
E
B aJ
rslD a
E a

m
J u

J m
0
h
E
0
0

c,
m aJ E cb
0 m

m .rl

kl
a
E a

m
E E m

m aJ

a
c,

.rl
c, c

.rl
c, c a

5
a
5

v
aJ m

> aJ

0 0 0

*rl

A
0 a
a
E a
m *
0
3 a
0
;t a
Q)
;t a

E
0

E aJ > aJ

.rl
c,

2

a"
c,
0
&

0

E
&
E

0

h, cr
c,

h a
cb
E a
m
c,
0
&
2
c.
0
aJ
m
9 a
0

2

E a
E
E
0

a
N
E a
rslD
h
0

.rl

.rl
c,

.rl

E"

E
2

2

c,

c,

.rl

0
E

c,

E
0
.rl
c,
.rl

a
h

cb
E a
n m aJ
m
m aJ
0
0
h a

c,

0

E
G
Q

m
m .m

h

3
4

L
a2 \ *

E
0

W
E c

cb aJ z a
aJ
h a

c,
0 a
h
E
0
0
cb
E a
m
aJ
.d
c,
.d .
.d

c,

a a a a
0

aJ a s
E
0
0
Q)
m

E

U r s l D

.rl

a E h 00
c j

6
m
+a a a
b a cr a

Q)
m \9

00 cb
E

.rl m a
a

*rl i *
ccr
0

s
00
o\

cb

E
2 u

d
d a *
Q)

;t
Q)

a J a J
h h

a
m 2

0 0 0 0

c

w
c, w aJ
c,

.rl

5
I

c, w
Q)
c,

cb
E
cot
E
0

cot
;t
M aJ
c,
E
H

I

.rl
c,

W

E
aJ m
0 a
k
s

.;II
c) a
c,
.rl
c,
E a
9 v
cr

9
cb
E
0

aJ
c,
c,
0

0
0
c,

cb aJ
m
9

m
0
h
E
0
0
M
E
9
u
k m

c,

.rl m

I

u^
k m
0
h
E
0

J
m

c,

u

m
0

m
c,
h a cr
h
u
;
033
m
c,
h a cr
0

h aJ
9
c,

E"
0
0 - ,a
0
.rl
c,
.rl
h
0
h
0

E
c,
.rl

8
0

r

L
I

m aJ
cb
0

E
aJ
0
E s
h

h
e
a"
0

aJ
0
h
9
0
m aJ
h

m
c,

h
9
0
0 aJ 0

kl aJ a
c) cr

c, z t v?
cb
E aJ
h

aJ
c,

s
cb aJ
N
E
rslD
0

.rl kl
c,

a
h aJ

0 c, aJ
m
aJ a

.rl m

2
E
9

0 aJ
h
aJ a
E a
0
kl

E"
c,

*
E
c.
.rl
c,

2
H

a
0

a a aJ m

m
m a
0
rslD

u 0 cr kl cr m
0 0 0 0

a
c,

E
m aJ s a
h
.rl

a

a
E
i
2
Q)
A a
3
0
3
E
E
0
0
ccr
0
m *
E

m

*rl *

E"

i

5

Q)
;t
3
a m

+a
a
3

d
d

Q)
3
;t
0 *
6

Q) m a *
d
0
L+

il
3
0
L+
*- a

d

m
Q)
A
*-
&

*rl

m
Q)
*rl

s
A- * m
E
2 0

m
E
H

a
c, a n
m aJ
c,
1

h
a
.rl

c,
c,
4

*
a
3

d
d

5
z

Q)

a
0
Q) a
ccr
0
;t
Q)
9

3
E

d

E
m
Q) *
3
9
;t

a

*rl

* *

0 0

Lc a a

I
x

m
-Y
Lc a
A o
3
I

m *
Lc a
A o
N

I

m +
Lc a
A u
CG
E x
I

m
c, aJ

m
A
0

u

E"

E"

U
h a
A u
E

2

E a
h
rslD
0
c, m

1

u

E
cb

c,
h a cr

a
0 m

0
aJ c,

c,
h a cr u
s
El
0

0 0 0 0 0 0 0

a
4
0
0

a
c, a
cb

n aJ

u
0 a

m u
n cr U
c;l c.

0
h aJ a
E
9
E

a aJ m
0
\

h
0 c.
cb aJ
a
9
0
a
0
n n
I
J a
\

c,

m

m

J

c;l

0
0
I
.3c
m
c,
0
&
a"
c.
0
h aJ a
E
9

a m
9
0
a
0

n n
I
J a
\
1

m

J

a
c,

\ E30
m
c,
0 aJ c.

a
m
cr
0 a aJ
h Q) G U

c.
0
h aJ a
E
3

u
J
r
u
J
r z

II z
Q m
J

z
Q m
J

u
0 7

0
0
0
I z CC, + u

0
CC,
I

d

c;l u a
c,

E30 u
II

\ m
c,
0
&
a"

m
II II a

m
h aJ a

W
E

II 1 n
I
J a
u u h,

h u
0 0 0 0 .

n

YP

m v;
1
0

m v;

CC) e
YP
0

CC) e
YP
0

CC) e
YP
0

CC) e
YP
0

CC) e
YP
0

CC) e
YP
0

e m m
1
s
G

e m m
1
k

2

e m m
1
k

2

e m m
1
k

2

e m m
1
Lc

e m m
1

4

0 0 0 0 0 0 0 0
b \ D M b " r (

I

0

r(

0

r(

0
r(

r(

0

m

c,

m a

0
0
0
m

0 0
0 0
m 0
N N

0
0
m 0 0

0 0
0 m
3 3

e

E-
0 *
E
Q)
L+
Q)

*rl

&

a"
*
0
8

E
0
Q)
A * 0

a
E a
*-
E
i

:
Q) m a
E

Q) m
E a
A u

a
A u

Ir

m
m
Q)
0
0

2

1

& 0 7
a

E
cri

G

z
m .d

m
22

4

. a
m
Q)
@rl
I
@rl
I
E
Q)
c.
0
+a
I
Q)
@rl
k a *
a
E
0
m
Q)
I
E
Q) *
Q)
k
p1
Q) a
E a
0
m
I
0
&
a"
0

\Q
00
v,
0

w
i6

4

b

00

m
0
m
0

0

m
m
0

0

0
r

00

(D

N

0
0 0 0 0 0 0 0 0
b (D V) * " r

cd
a
E
cd
a a
0 u
a

9
cd
cd a
k
0

Ccl
a
k a

cd
cd a
cd
A
a a
cd a +

2
c,

s
c,

c,

c,

2
0

k
cd

3 .rl

Fn
k
0

Ccl
cd
cd a
c,

a
t .i
1 m a
k
Fn
c,
k
cd
A u
0
k
E
c,

s
0

0

2
cd
Fn a
PI
PI
cd
0
c,
Fn a
PI
8
0

W
E

W
E

VJ
c,
k
cd
A
0

0
k
c
0
0
c
0
VJ
VJ a
0
0
k a
cd
0
c,
VJ
c,

c,
VJ

.
c,

.
e r l

e r l

cd

s
2 c,
cd
VJ

5

E
&

0
0

0

cd
cd
‘v
A

c,

c,

‘v :
2
E
0
0
a
h
c,

B c
cd
0
c w

e r l
VJ

2
E
&
0

cd
c,

E
0

E
&
0

c c, a
k

G
5

2
VJ

e r l

0
0
‘v c
cd
c w

e r l
VJ

2
2
a

h
cd
cd
‘v
k

c,

e
VJ
VJ a
0
0
k a
2
b
0

VJ a
w
0
0
‘v
0
A

e r l .
c, s
‘v c
cd

VJ
c,
k
cd
A
0

0
k
c
0
0

0
L m
k e
cd
cd
‘v

.
c,

c,

r(

r(

0 0 0 0 0 0 0
c \ 1 o c o c D T f c \ 1
7 7

H

c\l
Ti

*
0
v;

ch
0
Ti
H

cc)
Q
IA
0;

00
0
cc)

e(
VI c
Ti

L

m o m o m o m o
" c \ 1 c \ 1 - -

n*Cc)v,o
- N Q

E

F

x *
3
0
A *

v?
m
a2

2
t

; a 6
E
E
.d s

z
2
5
h

n
rl

M
o\
o\
rl

m
a2
v?

2

pij
E
.d
h
a2

2

u
PI m
L" W

W
o\

rl

vi
L4

.d

l? w
rl
h

s s u
PI m

h E
a -
R s

v? m
a2

2
?
E

h

i w m c; % s e
t-
o\
o\
rl

4 u

c,"
h

2 z
x'
a

t-"
d z

n
a L4"

m z
PI

u
PI m i - 5 G
a2
a2
m

c;

c; ST a
u
c, m
c,

.d

.d

.d

a

E
3f

2

4

.d
h

2

ST a
u .d

.d Y

4

P
E a a u
vi

m
h
a2

a
.d

2 n

z
2
a E a

g m
h
.II n c, a
3f z

2
a

w"

G s
t-"
o\

0
a2
c,

a *w
L n ST

0

a
.d

.d
c,

3 * a
'E
3 *
g

w"

s
-0

2 * dh
W
o\
rl
h

a2 a
H

w"

s
2 *
s

a s w
5
d

u
a s
9

& u

0 *

9 B
P,

I.s:
Fu P,

5 w

2 * s
-0

% s e
pa
E

a2
a2
E

u
a
2 2

%

2
G
5

s e *

w

s e

$

5
5

*

%

.d

l?

:
w
a2
h

d

v,
o\
o\

s
0 m rl

0 . . 0

4
J

4

aJ
h
0

El

Empirical Study of Inspection and Testing Data at Ericsson, Norway

Reidar Conradi, N o m . Univ. of Technology and Science (NTNU), Trondheim, Norway #
Amarjit Singh Marjara, Cap Gemini AS, Trondheim, Norway ##

Bmge Skitevik, STC, Vatlandsvig, Norway

pi . Univ. Maryland, Phone +1 (301)405-1255, Fax -6638, conrr?di~,idi.nhx~x.no,
Phone +47 73.8291 11, ~.

This paper was presented at PROFES’99, Oulu, Finland, 22-24 June 1999.
This is a revised version for 24* NASA Software Eng. Workshop, Washington, 1-2 Dec. 1999

Abstract

Inspections and testing represent core techniques to ensure reliable software. Inspections also seem to
have a positive effect on predictability, total costs and delivery time.

This paper presents a case study of inspections and testing, done at the Ericsson development
department outside Oslo in Norway. This department develops and maintains customer-defined
services around AXE phone switches, i.e. the functionality around the “star”” and “square” buttons on
house telephones.

AXE development at Ericsson world-wide uses a simple, local experience database to record
inspections and testing data. Two MSc students from NTNLJ have been given access to such historical
data in 1997 [MarJara97] and 1998 [Skaatevik99]. The results from these two diploma theses
constitute the basis for this paper.

The paper will study questions such as:

- The effectiveness and cost-effectiveness of inspections,

- The cost-effectiveness and defect profile of inspection meetings vs. individual reading,

- The relation between complexity/modification-rate and defect density,

- Whether the defect density for modules can be predicted from inspections for later phases and
deliveries.

The paper is organized as follows: Section 1 summarizes some relevant parts of the state of the art,
especially of inspections. Section 2 first describes the Ericsson context, and Section 3 describes
questions and hypotheses for the study. Section 4 describes the organization of the study, and
Section 5 presents and discusses the results. Section 6 sums up the paper and recommends some
future work.

1

Contents

Preface 2

1. State of the art 3

2. The company context 3

3. Questions and hypotheses
3.1 One Observation
3.2 Three Questions
3.3 Three Hypotheses

4. Organization of the study 6

5. The results and the evaluation of these 7
7

5.2 Q 1 : Are inspections performed at the recommended inspection rates? 9
10

5.4 43: Are the same kind of defects found in initial inspections

5.5 H1: Correlation between defects found during field-use and

5.6 H2: Correlation between defects found during inspectiodtest and

5.7 H3: Correlation between defects rates across phases and deliveries

5.1 0 1 : How (cost-)effective are inspections and testing?

5.3 42: How cost-efficient are the inspection meetings?

and following inspection meetings? 11

document complexity 12

document complexity 13

for individual documents/modules 14

6. Conclusion 14

7. References 16

Preface
The paper will present results from two MSc theses at NTNLJ, that have analyzed historical defect
data at Ericsson in Oslo, Norway -- related to their AXE switches. Ericsson has practised Gilb
inspections for many years, and collects defect data from inspections and testing in a small database.

These studies revealed that inspections indeed are the most cost-effective verification technique.
Inspections tend to catch 2/3 of the defects before testing, by spending 10% of the development effort
and thereby saving about 20% of the effort (by earlier defect correction, a “win-win”). Inspection
meetings were also cost-effective over most testing techniques, so they should not be omitted.
Inspection meetings also found the same type of errors (Major, Super Major) as individual
inspections.

We also found that there is a correlation between module complexity, modification rate, and the
defect density found during field-use, but not during inspections and test. Due to missing data, we

2

could not find out whether the defect density of modules repeated itself across inspectiodtest phases
and over several deliveries, i.e. we could not predict “defect-prone” modules. Defect classification
was also unsatisfactory, and prevented analysis of many interesting hypotheses.

1. State of the art

Quality in terms of reliability is of crucial importance for most software systems.

Common remedies are sound methods for system architecture and implementation, high-level
languages, formal methods and analysis, and inspection and testing techniques. Especially the latter
two have been extensively described in the literature, and vast empirical materials have been
collected, analyzed and published. This paper only refers to general test methods, so we will not
comment on these here.

Inspections were systematized by Fagan [Fagan761 [Fagan861 and represent one of the most important
quality assurance techniques. Inspections prescribe a simple and well-defined process, involving
group work, and have a well-defined metrics. They normally produce a high success rate, i.e. by
spending 10% of the development effort, we diagnose 2/3 of the defects before testing, and save 20%
of the total effort -- a win-win: so “quality is free”. Inspections can be applied on most documents,
even requirements [Basili96]. They also promote team learning, and provide a general assessment of
reviewed documents.

Of current research topics are:

. The role of the final inspection meeting (emphasized by Tom Gilb [Gilb93], see also [Votta93].

. When to stop inspections?

. When to stop testing, cf. [Adams84]?

. The effect of root-cause-analysis on defects.

. The role of inspection vs. testing in finding defects, e.g. their relative effectiveness and cost-
effectiveness.

. The relationship between general document properties and defects.

. Defect densities of individual modules through phases and deliveries.

Our research questions and hypotheses deal with the three latter.

2. The company context

Ericsson employs about 100,000 people world-wide, whereof 20,000 in development. They have
company-wide and standardized processes for most kind of software development, with adaptations
for the kind of work being done. Ericsson has adopted a classical waterfall model, with so-called
“tollgates” at critical decision points. In all this, verification techniques like inspections and testing are
crucial. Inspection is done for every life-cycle document, although we will mostly look at design and
code artifacts. Testing consists of unit test, function test and system test, where the two latter may be
done at some integration site different from the development site (e.g. Stockholm).

3

We will only study design inspections (in-groups), simplified code reviews (by individuals) and partly
testing in this paper.

The inspection process at Ericsson is based on techniques originally developed by Michael Fagan
[Fagan761 at IBM and refined by Tom Gilb [Gilb93]. The process is tailor-made by the local
development department. In addition there is a simplified code review done by individual developers
(data from code review and unit test are sometimes merged into a "desk check"). Thus full inspections
are only done upon design documents in our studies. Data from inspectionsh-eviews and testing are
collected in a simple, proprietary database and used for local tuning of the process. Defects are
classified in Major, SuperMajor and Questions (the latter is omitted here) -- thus no deep
categorization.

We have studied software development at the Ericsson site outside Oslo. It just passed CMM level 2
certification in Oct. 1998, and aims for level 3 in year 2000. The Oslo development site has about 400
developers, mostly working on software. The actual department has about 50 developers, and works
mostly on the AXE-10 digital software switch, which contains many subsystems. Each subsystem
may contain a number of modules. The development technology is SDL design language (SDT tool
from Telelogic) and their proprietary PLEX language from the late 1970s (own compilers and
debuggers).

Figure 1. Basic inspection process at Ericsson for design artifacts (documents).

Participants

Moderator

WhoB team

Inspectors
(individually)

WhoB team

Interested
parties

Interested
parties

Author

Moderator

Entry Evaluation and Planning

I
Kickoff

I

Preparation (reading)

Inspection Meeting

I

Rework

Follow-up and Exit Evaluation

The first level inspection process

Duration

10 - 15 minutes

maxir" 2 hours
(the specified fixed
rates must be followed)

maxir" 2 hours
(the inspection rates
must be followed)

optional

optional

Special inspection groups are formed, called product committees (PC), to take care of all impacts on
one subsystem. In this paper, we will only look at subsystem-internal inspections, not across
subsystems. The inspection process is indicated in figure 1 above, and follows FagadGilb
inspections wrt. overall set-up, duration etc. The number of inspectors per document is typically 3-4.
Special check-lists are used for each document type.

4

The different types of documents are presented in the table 1 below.

Table 1. Document types (18 such).

BDFC
COD
FD
FDFC
FF
FS
FTI
FTS
IP
OPI
POD
P N
SD
SPL
SPI

Application Information

Adaptation Direction
Application Information
Block Description
Block Description Flow Chart
Command Description
Function Description
Function Description Flow Chart
Function Framework
Function Specification
Function Test Instruction
Function Test Specification
Implementation Proposal
Operational Instruction
Printout Description
Product Revision Information
Signal Description
Source Parameter List
Source Program Information

Each of these document types have specific, recommended inspection rates (Skitevik99).

3. Questions and hypotheses

3.1 One Observation

01: How (cost-)effective are inspections and testing?

3.2 Three Questions

Q1: Are inspections performed at the recommended inspection rates?

Q2: How cost-efficient are the inspection meetings?

Q3: Are the same kind of defects found in initial inspection reading and following inspection
meetings?

3.3 Three Hypotheses

For each question we present one null hypothesis, Ho, which is the one that will actually be tested, and
an alternative hypothesis, Ha, which may be considered valid if the null hypothesis is rejected. For the
statistical tests presented in this paper, a significance level @-level) of 0.10 is assumed.

5

The three alternative hypotheses are:

H1: Is there a significant, positive correlation between defects found during field-use and document
complexity?

H2: Is there a significant, positive correlation between defects found during inspectiodtest and
document complexity?

H3: Is there a significant correlation between defect rates across phases and deliveries for individual
documents/modules? (i.e. try to track "defect-prone" modules)?

4. Organization of the study

We have performed two studies where we have collected and analyzed historical data from software
department at Ericsson in Oslo. Torbj0rn Frotveit, our middleman at Ericsson, has all the time
fumished us with the requested data.

This paper presents results from these two studies of inspection and testing:

+ Study 1: This is the work done in a diploma thesis from 1997 [Marjara97]. Marjara investigated
inspection and test data from Project A of 20,000 person-hours (14 person-years). Defect data in
this work included inspection, desk check, function test, system test and partly field-use.

+ Study 2: This is the follow-up work done in the diploma thesis from 1998 [Skitevikgg]. This
thesis has data from 6 different projects (Project A-F), including the project Marjara used in Study
1. It represents over 100,000 person-hours (70 person-years). The test data in this work include
only data from inspection and desk check, since later testings were done by other Ericsson
divisions. However, it was possible to split desk check in code review and unit test, and data from
these to activities are presented. Data from field-use are not included, due to same reasons as for
function- and system test.

Threats to internal validity:

We have used standard indicators from the literature on most properties (defect densities, inspection
rates, effort consumption etc.), so all in all we are on agreed ground. However, wrt. Module
complexity we are unsure, and further studies are needed. Whether the recorded defect data in the
Ericsson database are trustworthy is hard to say. We certainly have discovered inconsistencies and
missing data, but our confidence is pretty high.

Threats to external validity:

Since Ericsson has standard working processes world-wide, we can assume at least company-wide
relevance. However, many of the findings are also in line with previous empirical studies, so we feel
confident on general level.

6

5. The results and evaluation of these

Activity

Inspection reading, design

This chapter presents the results from the two studies described in the previous section (4), and tries to

Two definitions will be used throughout this section, effectiveness and cost-effectiveness:
conclude the questions and hypotheses stated in section 3.

Defects [%I
[#I

928 61.8

Effectiveness: the degree to which a certain technique manages to find defects, i.e. diagnosed defect
rate (defects per “volume-unit”), regardless of cost. This is sometimes called efficacy.

89
17
35

1502

Cost-effectiveness: effort spent to find one defect.

5.9
1.1
2.3

100.0

5.1 0 1 : How (cost-)effective are inspections and testing?

Defects
[#I

Here we shall describe and compare the effectiveness and cost-effectiveness of inspections and testing
at Ericsson in Oslo. The effort spent before invidual reading is proportionally distributed over
inspection reading and inspection meetings. The inspection-phase effort spent after inspection
meetings are similarly merged into “defect fixing” (se Figure 1). Table 2 is taken from Study 1 and
shows the effectiveness of inspections and testing. All efforts are in person-hours, sometimes just
called hours.

Total effort cost- Total effort Estimated saved
on defect effectiveness on defect effort by early
detection [h:m per fixing defect removal

[hl defect] [hl (“magic formulae”)

Table 2. EfJiciency: total defects found, Study 1.

Inspection reading, design
Inspection meeting, design
Code review and unit test
Function test
System test
Field-use

[hl

311.2 8200 928 786.8 00:51
29 375.7 12:57

404 1257.0 03:07
89 7000.0 78:39
17
35

I 4;: I 2::; I Inspection meeting, design I Desk check (code review + unit test)
Function test
System test
Field-use
Total

Table 2 shows that inspections are the most effective verification activity, finding almost 64% of total
defects found in the project. Second best is the desk check that finds almost 27%. We also see that 3%
of the defects found by inspections are found in the meetings. To analyze which of the verification
activities that are most effective, the effort spent on the different activities was gathered. Table 3
shows the effort (person-hours) spent on the six verification activities.

Table 3. Effort and cost-efJiciency on inspection and testing, Study 1.

Activity

7

When combining effort and number of defects, inspections proved to be the most cost-effective. Not
surprisingly, function test is the most expensive activity (note: we have no effort data om system test).
It should be noted that only human labor is included for desk check (code review and unit test) and
function test. The costs of computer hours or special test tools are not included. Neither is the human
effort spent in designing the test cases.

Inspection reading, design

In Study 2 it was not possible to get defect data from function test, system test and field-use
(representing 9.3% of the defects in Study 1). Instead the data made it possible to split up the desk
check, which actually consist of code review and unit test (emulator test). Table 4 shows the results.

4478 I 71.1

Table 4. EfJiciency: total defects found, Study 2.

Activity

Inspection reading, design
Inspection meeting, design
Desk check, code
Unit test, code

Defects Total effort cost- Total effort Estimated saved
[#I on defect effectiveness on defect effort by early

detection [h:m per fixing defect removal
[hl defect] [hl (“magic formulae”)

[hl

11737 41000 4478 5563 01:15
3 92 3215 08: 12
832 2440 02:56
598 4388 07:20

Inspection reading, design
Desk check, code I Unit test. code

3 92 6.2
832 I 1;:; I
598

Again, the data show that inspections are highly effective, contributing to 77% of all the defects found
in the projects. Desk check is second best, finding almost 13% of the defects in the projects.
Compared to Study 1, there is an improvement in the inspection meeting, whose effectiveness has
increased from 3% to 8% for defects found during inspections.

Table 5 shows the effort (person-hours) of the different activities from Study 2. In this study, no data
from Function test or later tests were available.

Table 5. Effort and cost-efJiciency on inspection and testing, Study 2.

The inspection meeting itself is more cost-effective in Study 2 (8h: 12min per defect) than in Study 1
(12h:57min per defect).

In Study 2 covering 100,000 person-hours, a total of 20,515 person-hours were spent on inspections
(including 11,737 person-hours on defect fixing). It has been calculated that inspections did save
41,000 person-hours, which would have been necessary to locate and correct defects otherwise found
by later testing. That is, a net saving of 21% of the total project effort.

Study 1 covered 20,000 person-hours where 1474 person-hours were spent on inspections (including
31 1.2 person-hours on defect fixing). In this study it was calculated that Ericsson saved 8200 person-
hours, or a net saving of 34%!

8

5.2 Q1: Are inspections performed at the recommended inspection
rates?

Type of effort

Actual effort, Study 1

Here we want to see if the recommended inspection rates were actually applied. The results are
presented in table 6. Note, that all this applies to design documents, not source code.

Total inspection effort Share [%I
including defect fixing [h]

1474 54%

Recommended inspection rate, Study 1

Actual effort, Study 2

Recommended inspection rate, Study 2

2723 --

20,5 15 78,6%

26,405 --

Thus in Study 2, inspections are performed too fast. Only 20,515 person-hours are actually spent on
inspections including defect fixing - being 78.6% of the recommended expediture of 26,405 person-
hours. The average number of defects per page is 0.43.

Study 1 concluded with even more deviating results, as only 54% (1474 actual person-hours out of
2723 recommended person-hours) are totally used during inspections including defect fixing.

As reported elsewhere, plots on reading rate and defect detection rate (see figure 2) show that the
number of defects found per page decreases as the number of inspected pages (document length) per
hour increases. Inspection performed too fast will then result in decreased detection rate. However, we
have not done any (re)analysis of “optimal” reading rates here. Also note, that the individual reading
rate is apart of the total inspection rate mentioned e.g. in Table 6.

9

Figure 2. Number of pages inspected and defect detection rate, Study 1.

5

3

5

2

5

1

5

I Person-hours

L
0

fo
E

‘T

Inspection Inspection Defect Sun
Reading Meeting fixing

5563 3215 11737 20515

L
m
Q
3
cr,
Y

3.

2.

1.

0.

- 2 - I

0 10 20 38 40 50 68 70 80 90
Number o f i n s p e c t e d pages (Document)

5.3 Q2: How cost-efficient are the inspection meetings?

Table 7 shows the effort consumption for each step of the inspections including defect fixing from
Study 2. Effort before individual reading and inspection meeting has been proportionally distributed
on these two activities.

Table 7. Effort consumption for inspection and defect fwcing, Study 2.

I r%l I 27.12% I 15.67% I 57.21% I 100.00% I

Note that 57.2% of the “inspection-time effort” is spent on defect fixing in Study 2 (1 1,737 of 20,515
person-hours), while only 2 1.1% is spent on such (3 1 1.2 out of 1473.7 person-hours) in Study 1.

10

Table 8 from Study 2, shows the number of defects recorded in reading, in meetings, and the total.

Table 8. Cost-effectiveness and defect classijkationJi-om inspections, Study 2.

As mentioned, the defects are classified in two categories:

+ Major: Defects that can have a major impact later, that might cause defects in the end products,
and that will be expensive to clean up later.

+ Super Major: Defects that have major impact on total cost of the project.

In Study 2, 8% of the defects found by inspections are found in the meetings, with a cost-effectiveness
of 8h:12min of person-effort. Compared to function test and system test, inspection meetings are
indeed cost-effective in defect removal.

5.4 Q3: Are the same kind of defects found in initial
and following inspection meetings?

We will also like to investigate what type of defects are found during

nspection reading

nspection reading versus
inspection meetings. Note: We do not have data on whether inspection meetings can refute defects
reported from individual reading (“false positives”), cf. [Votta93]. Our data only report new defects
from inspection meetings (“true negatives”). Table 8 from Study 2 shows, that totally 2.7% of all
defects from inspections are of type Super Major, while the rest are Major.

For inspection reading, the Super Major share is 2.7%. For inspection meeting the share is 3.1%, i.e.
only slightly higher. We therefore conclude that inspection meetings find the same “types” of defects
as by individual reading.

No such data were available in Study 1.

11

5.5 H I : Correlation between defects found during field-use and
document complexity

Intuitively, we would say that defects detected in field-use could be related to complexity of the
module, and to the modification rate for the module. The modification rate indicates how much the
module is changed from the base product, and the complexity is represented by the number of states
per module (taken from a state machine diagram and reported by TeleLogic's SDL tool called SDT).
For new modules the modification grade is zero. Correlation between modules and defect rates for
each module (i.e., not the absolutely number of defects, but defects per volume-unit) have not yet
been properly checked.

In Study 1, the regression equation can be written as:

where Nh is number of defects (faults) in field-use, Ns is number of states, Nmg is the modification
grade, and a, p, and h are coefficients. HI can only be accepted if p and h are significantly different
from zero and the significance level for each of the coefficients is better than 0.10. The following
values were estimated:

Nh= -1.73 + 0.084"Ns + 0.097"Nmg

Predictor Coefficient StDev t P
Constant -1.732 1.067 -1.62 0.166
States 0.084 0.035 2.38 0.063
Modrate 0.097 0.034 2.89 0.034

Here are s = 1.200, R2 = 79.9%, and R2(adl) = 71.9%, where s is the estimated standard deviation about
the regression line, R2 is the coefficient of determination, and R2(ad,) is similar but adjusted for degrees
of freedom. That is, if a variable is added to an equation, R2 will get larger, even if the added variable
is of no real value. To compensate for this, R2(adl) is chosen as coefficient of determination.

The values for estimated coefficients are given above, along with their standard deviation, t-value for
testing if the coefficient is 0, and p-value for this test. The analysis of variance is summarised below:

Source DF ss MS F P
Regression 2 28.68 14.34 9.96 0.018
Error 5 7.20 I .44
Total 7 35.88

In the table above, DF is the degrees of freedom, SS is the total sum of squares corrected for the
mean, MS is mean sum of squares, F is the Fisher observator for F-test, and P is the significance level
for this test.

It should be noted that the coefficients are not significant, but that the states and modification rate are
significant. The F-Fisher test is also significant, and therefore the hypothesis HI can be accepted,
based on the results from the regression analysis.

12

5.6 H2: Correlation between defects found during inspection/test and
document complexity

Module name

The relevant data come from Study 2. Because just some of the modules are found over several
lifecycles, only 12 modules out of 443 could be used for this analysis. 12 modules out of 443, shows
that we should probably have checked out more thoroughly relations between phases in same
lifecycle, not just between different lifecycles.

Project A Project B Project C Project D Project E
I I I I I I I I I I I I I I

Since data are collected for each document type, and each module in each phase consists of different
number of document types, one document type is selected through all the phases. The document type
selected is BDFC (Block Description Flow Chart). Table 9 shows the results. Field marked with "-"
means that the data are missing, or no module exists. Because all the modules presented in this table
only were included in project A through E, project F were excluded.

SUSAP
SUSCCTA
suscs

Table 9. Defect data for BDFC documents over different modules andprojects, Study 2.

0.26 67.0 42 - 10 - 0.04 78.0
0.34 269.5 118 - 297.5 132 1.00 299.5 3
0.06 257.0 14 0.90 267.5 34 0.18 254.5 21

Predictor
P

Estimate Standard error t P
13.595002 18.52051 0.73 0.4729

I I I I I I I I I I I I I I I I

Each project has data on defects per page found in inspections, the complexity of each module, and
number of defects found in unit test (here called base test) for each block.

Hypothesis 2, uses the data presented above, and checks whether there exist a correlation between
defects found during inspectiodtest and complexity for a module. The regression equation used to
state this hypothesis can be written as:

Y = ax + p, where Y is defect density, X is the complexity, and a and p are constants.

Ho can only be accepted if a and p are significantly different from zero and the significance level for
each of the coefficients is better than 0.10. The following values were estimated:

Y = 0.1023"X + 13.595.

Table 10. Estimated values, Study 2

a I 0.1022985 0.093689 1.09 0.2901

13

It indicates that the linear regression line must be rejected if a significance of level 0.10 is assumed,
i.e., neither H2 nor Ho can be refuted. So more data is needed.

However, Ericsson reports that the best people often are allocated to develop difficult modules and
more attention is generally devoted to complex software. This may explain why no significant
correlation was found. More studies are anyhow needed here.

5.7 H3: Correlation between defect rates across phases and deliveries
for individual documents/modules

This hypothesis, from Study 2, uses the same data as for hypothesis 2. To check for correlation
between defect densities across phases and deliveries, we have analyzed the correlation between
defect densities for modules over two projects. Because the lack of data in this analysis, only Project
A and Project B where used (see table 9). Table 1 1 shows the correlation results.

Table 11. Correlation between defect density in Project A and B, Study 2.

I Correlation: 0.472 I Defect density in Project A vs. Defect density in Project B

With a correlation coefficient of 0.4672, we cannot conclude that there exists a significant correlation
between the two data sets. We had only 6 modules with complete data for both projects for this test.
The test should be done again, when a larger data set are available. So neither H3 nor Ho can be
refuted.

6. Conclusion

After analysis of the data, the following can be concluded for Ericsson in Oslo:

Software inspections are indeed cost-effective: They find around 70% of the recorded defects,
take 6% to 9% of the development effort, and yield an estimated saving of 21% to 34%. le. ,
finding and correcting defects before testing pays off - so “quality is free”.

7% of the defects from inspections (3% in Study 1, 8% in Study 2) are found during the final
meeting, while 93% are found during the individual reading. Almost the same distribution of
defects (Major, Super Major) are found in both cases. However, Gilb’s insistence on finding many
(serious) defects in the final inspection meeting is not supported here.

By comparison, [Votta93] reports that 8% of the defects are found in the final inspection meeting.
Votta therefore proposes to eliminate them, since they are costly (7-14 times less cost-efficient
than individual reading in our studies) and since their logistics is bothersome (binding up many
busy people and thus victims to sudden cancellations). However, inspection meetings are indeed
cost-efficient compared to function tests (6 times more cost-effective in Study l), and presumably
to later tests too. Inspection meetings also fulfill important social functions, like dissemination of
knowledge and promotion of team spirit. At Ericsson they also serve to give an overall quality
check or approval of design documents.

14

Individual reading and individual desk reviews are the most cost-effective techniques to detect
defects, while system tests are the least cost-effective.

The recommended inspection rates are not really followed, since only 54% to 79% of the
recommended effort is being used.

The identified defects in a module do not depend on the module’s complexity (number of states)
or its modification rate, neither during inspections nor during testing.

However, the number of defects for one concrete system (Study 1) in field-use correlated
positively with its complexity and modification rate.

We had insufficient data to clarify whether defect-prone modules from inspections continued to
have higher defect densities over later test phases and over later deliveries.

The collected, defect data has only been partly analyzed by Ericsson itself, so there is a huge
potential for further analysis.

The defect classification (Major and Super Major) is too coarse for causal analysis in order to
reduce or prevent future defects, i.e. a process change, as recommended by Gilb. We also lack
more precise data from Function test, System test and Field-use.

It is somewhat unclear what these findings will mean for process improvement at Ericsson. At least
they show that their inspections are cost-effective, although they could be tuned wrt. recommended
reading rate (number of inspected pages per person-hour, as part of overall inspection rates).

On the other hand, a more fine-grained data seem necessary for further analysis, e.g. for root-Cause-
Analysis (also recommended by Gilb). More detailed information is needed on “false positives” and
on overlap in detected defects among inspectors to allow capture-recapture analysis. Such defect
classsification seems very cheap to implement at defect recording time, but is almost impossible to
add later. However, Ericsson seems rather uninterested to pursue such changes, e.g. since “approval
from headquarters” is necessary to modify the current inspection process. However, due to a change
in technology platform from SDL and PLEX to UML and Java, Ericsson will anyhow have to revise
their inspection process towards object-oriented technologies and corresponding inspection techniques
[Travassos99].

Inspired by these findings, NTNLJ is anyhow interested to continue its cooperation with Ericsson on
defect studies in the context of the SPIQ project. Their defect database seems under-used, so these
studies may encourage a more active utilization of collected data. Further, NTNLJ has under way
further longitudinal studies at Ericsson, spanning over several development phases and release cycles.

Acknowledgements: We thank Torbj0rn Frotveit and other contacts at Ericsson for their time and
interest in these investigations, and the Norwegian SPIQ project on Software Process Improvement
for economic support. We also thank Oliver Laitenberger from Fraunhofer IESE, Kaiserslautern for
insightful comments.

15

7. References

[Adams84]) Edward Adams:

“Optimizing Preventive Service of Software Products”,

IBM Journal of Research and Development, (1):2-14, 1984.

[Basili96] Victor R. Basili, Scott Green, Oliver Laitenberger,

Filippo Lanubile, Forrest Shull, Sivert Serumgard, and Marvin V. Zelkovitz:

“The Empirical Investigation of Perspective-Based Reading”,

J. of Empirical Software Engineering, Vol. I , No. 2, 1996, p. 133-164.

[Fagan761 Michael E. Fagan:

“Design and Code Inspection to Reduce Errors in Program Development”,

IBM Systems J. Vol. 15, No. 3, 1976, p. 182-2 I I .

[Fagan861 Michael E. Fagan:

“Advances in Software Inspections”,

IEEE Trans. on Software Engineering, SE-12(7):744-751, July 1986

[Gilb93] Tom Gilb and Dorothy Graham:

“Software Inspections”,

Addison-Wesley, London, UK, 1993.

[Marjara97] Amarjit Singh Marjara:

“An Empirical Study of Inspection and Testing Data” (Study I),

IDI. NTNU, Trondheim, Norway, 22 Dec. 1997.

108 p., EPOS TR 308 (diploma thesis).

[Skatevik99] Berge Skatevik:

“An Empirical Study of Historical Inspection and Testing Data at Ericsson” (Study 2) ,
IDI, NTNU, Trondheim, Norway, 8 Feb. 1999.

90 p., EPOS TR 350 (diploma thesis).

[Travassos99] Guilherme H. Travassos, Forrest Shull, Michael Fredericks, Victor R. Basili:

“Detecting Defects in Object Oriented Designs: Using Reading Techniques to Increase Software Quality”,

Proc. Conf. on Object-Oriented Programming, Systems, Languages, and Applications (00PSLA’99),

Denver, Colorado, 3-5 Nov. 1999.

In ACM SIGPLAN Notices, Vol. 34, No. 10, Oct. 1999, p. 47-56.

[Votta93] Lawrence G. Votta:

“Does Every Inspection Need a Meeting?”,

In Proc. ACM SIGSOFT 93 Symposium on Foundation of Software Engineering.

ACM SIGSOFT Engineering Notes, Vol. 18, No. 5, December 1993, p. 107-1 14.

Updated 08 Dec. I999 (rc), File: -spiq/presentasjoner/artikler/NASA99-ericsson-v3 .doc

16

a

.;\

\
\
\
\
\
\
\
\
\
\
\

'
\
\

\ '
\
\

\
\ ' \

\
' w

'

asn- p p j UF punoj s p a p a

\
\
\

\
\

Q.
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

e

e

asn- p p j UF punoj s p a p a

I
I
I
I
I
I
I I#
I
I
I
I
I
I
I
I
I
I
I
I

#I
I
I
I
I
I
I

I#
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

#; #

I
I
I
I
I
I
I I#
I
I
I
I
I
I
I
I
I
I
I
I

#I
I
I
I
I
I
I

I#
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

#; #

Session 8: COTS

Steven Demurjian, University of Connecticut

Daniil Yakimovich, University of Maryland

SEW Proceedings SEL-99-002

JINI: A Technology for 2lSt Century -- Is it Ready For Prime Time?”

Prof. Steven A. Demurjian, Sr.
Computer Science & Engineering Dept.

The University of Connecticut
Storrs, CT 06269-3 155
steve@engr.uconn.edu

Tel: 860.486.4818
Fax: 860.486.4817

Dr. Paul Barr
The MITRE Corp
145 Wyckoff Road

Eatontown, New Jersey 07724
poobarr@mitre. org
Tel: 732-935-5584
Fax: 732-544-83 17

1. Introduction and Motivation
Distributed computing applications for the 21 st century are network centric, operating in a dynamic environment
where clients, servers, and the network itself all have the potential to change drastically over time. A distributed
application, a system of systems, must be constructed, consisting of legacy, commercial-off-the-shelf (COTS),
database, and new clientherver applications that must interact to communicate and exchange information between
users, and allow users to accomplish their tasks in a productive manner. The issue is to promote the use of existing
applications in new and innovative ways in a distributed environment that adds value. To adequately support this
process, the network and its software infrastructure must be an active participant in the interoperation of distributed
applications. Ideally, we are interested in distributed applications that plug-and-play, allowing us to plug in (and
subtract) new “components” as needs, requirements, and even network topologies change over time.

JINI [Arno99, JINI, JINIARCH] is a new architecture built on top of Java’s remote method invocation (M I) that
promotes the construction and deployment of robust and scalable distributed applications in a network centric
setting. JINI technology is forcing software designers and engineers to abandon the clientherver view in order to
adopt a client/sewices view. In JINI, a distributed application is conceptualized as a set of services (of all resources)
being made available for discovery and use by clients. To accomplish this, JINI makes use of a lookup service,
which is essentially a registry for tracking the services that are available within a distributed environment. Services
in JINI discover and thenjoin the lookup service, registering the services (of each resource) that are to be made
available on the network. Thus, JINI is conceptually very similar to a distributed operating system, in the sense that
resources of JINI are very similar to OS resources. However, in JINI these resources can be dynamically defined
and changed. To illustrate JINI, consider that a service register-for-course (course#) for a Course
database in a University application may be registered with the lookup service. Clients request services by
interacting with the lookup service, e.g., asking for register-for-course (CSE23 0) . The lookup service
returns a proxy to the client for the location of the service. The client then interacts duectly with the service via the
proxy to execute the service, e.g., registering for CSE230. In this process, there are a number of important
observations. First, services can come (register and join) and go (leave) without impunity, since all interaction with
services occurs via the lookup service. Second, clients locate and utilize services without knowing their location on
the network, allowing clients to work without interruption as long as “some” service can be located to meet their
needs. Third, the location of clients andor services on the network can change at any time without impacting the
network or the users.

Our efforts are motivated from two perspectives. First, by Army requirements, we evaluated the JINI technology in
support of present and future systems. Second, as part of grant from AFOSR on large-scale, multi-agent,
distributed mission planning and execution in complex dynamic environments, we have been considering the ability
of software agents (written using Java) to interact with JINI resources and services. In both efforts, there are a
number of common, fundamental questions:

Can JINI Support Highly-Available Distributed Applications?

Can JINI Support an Environment with Dynamic Clients and Replicated Services?

Will Clients Continue to Operate Effectively if Replicated Services Fail?

Can JINI be Utilized to Maintain “minutes-off’ Data Consistency of Replicas?

Is JINI Easy to Learn and Use? What is Maturity Level of JINI Technology?

f The work in this paper has been partially supported by a contract from the Mitre Corporation (Eatontown, NJ)
and AFOSR research grant F49620-99-1-0244.

mailto:steve@engr.uconn.edu

JINI: A Technology for 21St Century?

The reality is that new technologies offer new challenges, with the potential to reap benefits if adopted. However,
for hture Army systems, it is important that a careful balance is drawn to opt for mature technologies while
targeting emerging technologies with potential. The key issue is where JINI fits ~ as a mature technology or yet
another one with potential? The remainder of this abstract reviews JINI, our experimental prototyping effort,
summarizes our results, and proposes a series of future work to answer the question: “Is JINI Ready for Prime
Time?”

2. JINI

Stakeholders (software architects, designers, and implementors) can utilize JINI to construct a distributed
application by federating groups of users (clients) and the resources that they require. In JINI, the resources register
services which represent the functions that are provided for use by clients (and other services). In a sense, the
services are similar in concept to public methods that are exported for usage as part of an applications class library
(API). JINI is versatile, and allows a service to represent any entity that can be used by a person, program (client),
or another service, includmg: a computation, a persistent store, a communication channel, a software filter, a real-
time data source (e.g., sensor or probe), a hardware device (e.g., printer, display, etc.), and so on. The services are
registered with a look-up service. The registration of services occurs using a leasing mechanism. With leasing, the
services of a resource can be registered with the lookup service for a fixed time period or forever (no expiration).
The lease must be renewed by the resource prior to its expiration, or the service will become unavailable. This
feature, in part, supports high availability, since it requires the resources to constantly reregister their services; if a
resource goes down and does not reregister, the leases on its services expire, and the services will then be
unavailable from the lookup service.

As a technology, JINI provides an infrastructure to design and construct distributed applications with a network
centric approach that assumes an environment where there is a requirement for the spontaneous interaction of clients
and services. Spontaneity from a client perspective supports the dynamic behavior of clients, where they enter and
leave the network unpredlctably. While connected, clients are guaranteed that either the visible services are
available or that failure can be trapped and handled. Spontaneity from a resources perspective, means that when
resources fail, the network can adapt, to insure that redundant services, if available, are now accessible to clients.
Operationally, when a client wishes to interact with a service, the interaction can occur by either a download of code
from service to client, or the passing of a proxy which allows a RMI-like call by the client to the service.

The lookup service is the clearinghouse of a JINI network centric application, since all interactions by resources
(e.g., dlscovering lookup services, registering services, renewing leases, etc.) and by clients (e.g., discovering
lookup services, searching for services, service invocation, etc.) must occur through the lookup service. When there
are multiple lookup services running on a network, it is the responsibility of the resources to register with them (if
relevant). Clients can interact with multiple lookup services, and in fact, it is possible for groups of clients to be
established that will always consult a particular “close” lookup service, dlctated perhaps by network topology or
traffic. Whenever resources leave the environment (either gracefully or due to failure), the lookup service must
adjust its registry. There is a time lag between the resource leaving and the removal of services from the registry.
Clients must be sophisticated enough to be able to dynamically adjust to these situations.

After discovery has occurred, the resources register services on a class-by-class basis. The class is registered as a
service object which contains a Java programming interface to the service, namely, the public methods available to
clients coupled with a set of optional descriptive service attributes. This registration process is referred to joining
and is shown in Figure 1. In JINI terms, the service object is registered as a proxy, which contains all of the
information that is needed to invoke the service. In the request for service, shown in Figure 1, a client will ask for
the service to register for a course of the CourseDB class based on the signature of the method: status
register-for-course (int) . The lookup service will return a service proxy that allows the client to invoke
any or all of the methods defined within the service. Using the proxy, the client invokes the needed method(s) as it
would any other Java method; the call transparently utilizes RMI with the result of the call returned to the client.
The interaction between the client and the resource occur independent from the lookup service.

A lease is the part of the JINI programming model that allows the resources to set the limits of its utilization of
services, and allows the lookup service to remove services from its registry that are no longer available. A resource
can lease a service to a lookup service forever (not recommended) or lease with a specific expiration date (in
milliseconds). If leased using an expiration date, the resource is responsible for renewing the lease prior to its
expiration. The leasing and renewal process is intended to keep the registry fresh, containing all active and working

2

JINI: A Technology for 21St Century?

services. This is of particular importance in a dlstributed application where resources leave the network due to
failure or other reasons. When a resource leases its services with specific expiration times, if failure occurs, when
the lease expires and is not renewed, the services will no longer be available. In addltion, the lookup service
periodically checks to see if services (and resources) are active. Whenever failure occurs, there is a time period
when services will be listed in the registry that are unavailable to clients, and in fact clients will receive exceptions if
they try to execute such services. Thus, even if a client receives the proxy for a service that is active in the registry,
there is no guarantee that the service will be available when invoked. Thus, it is imperative that software engineers
design clients that are able to handle this situation.

Service Invocation via Prox

1. Client Invokes AddCourse(CSE230) on Resource
2. Resource Returns Status of Invocation

Figure 1: Join, Lookup, and Invocation of Service.

3. Experimental Prototyping Effort

We have taken an experimental prototype approach to evaluate the capabilities of JINI under WinNT to determine if
JINI is “ready for prime time”. The goal of the experimentation is to explore the ability of JINI to support
applications that require high availability (via replication of resources and their services and data) in an environment
where the replicated resources are volatile. Clients, which are also entering and leaving the network, consult the
JINI lookup service to locate and subsequently execute the “services” of the replicated resource that are necessary to
carry out their respective tasks. If one of the services fails, there is a back-up service that can be utilized to support
the client. The replicated databases must be kept consistent, but at any given time point, the data in one database
might be “minutes off’ the data in the other databases. Over time the databases will synchronize and contain the
same information. It is crucial that updates not be lost during the modification and synchronization processes.

A total of six experimental prototypes have been developed modeled on a university application where Persons
(students and faculty) are attempting to access andor modify information related to a course schedule. Students and
faculty have a GUI (Java client application) through which they must enter their name and password, and once
verified, are able to access course information. To support this, both a PersonDB (for authentication and
authorization) and a CourseDB must be available. These two databases are stored in Microsoft Access, and a Java
application or database resource, offers a set of “services” that are made available by registration with JINI to
clients. A Java GUI client consults the JINI lookup service to search for appropriate services of the replicated
database resource that can satisfy their requirements as needed by the student/faculty request. Whenever a Java GUI
client modlfies the CourseDB as a result of a user request, all other replicated CourseDBs must be modlfied so that
the replicas remain consistent. However, there may be a time difference where the data in one CourseDB is minutes
off the data in the other CourseDBs. For discussion purposes, Prototype 6 is shown in Figures 2 and 3.

3

JINI: A Technology for 21" Century?

bPgn Ice

Discover, Join,

Figure 2: Pre-Lookup Services in Prototype 6.

1. Request 8. Release
Update Lock Lock

Services for CourseDB

Course(CSE230)

Figure 3: Execution Process in Prototype 6.

Prototype 6 incorporates a pre-lookup resource and associated services that implements a protocol that supports
simultaneous reads in conjunction with at most one exclusive write, and includes PersonDB and CourseDB services
for use by GUI clients. The pre-lookup services as shown in Figure 2, allow the locking and unlocking of services,
identify clients (getcclient I D) , and permit replicated database resources to register their services with the pre-
lookup service (addservice and rmvservice). Thus, clients can still read the data even if one client is holding
a write lock. PersonDB services are for authorization and authentication of the client, while CourseDB services
allow course information to be queried and changed. Figure 3 illustrates the process and steps taken by a client.
After startup, the client applications will be interested in discovering and utilizing services. In Prototype 6, prior to
the JINI lookup service being consulted, the client must first interact with the pre-lookup service, as shown in Figure
3, arrow 1. The client consults with the pre-lookup service by discovering its existence and interacting with the JINI

4

JINI: A Technology for 21St Century?

lookup service to obtain a proxy to request a lock. If a lock on the required service (read, insert, delete, or modify
the CourseDB) is granted, the client can proceed according to arrows 3 through 7 in Figure 3. If a lock is not
granted, the client is told to wait. The pre-lookup service will queue the client’s identifier for the requested service
to insure that starvation is prevented for clients that are denied locks at the pre-lookup service. Then, Client 1, in
this case, enters a loop which will continuously request the lock (arrow 1) from the pre-lookup service. As long as
another client holds the lock, a wait response will be sent to Client 1. Eventually the client holding the lock desired
by client 1 will release the lock. When Client 1 next requests the lock and the first element of the queue for the
service contains its identifier, Client 1 will be granted the lock, and processing proceeds via arrows 3 through 7.

4. Conclusions and Recommendations

Our conclusions and recommendations are constructed from a two-fold perspective. First, our efforts on the
experimental prototypes have answered, in part, the questions posed in the introduction, specifically:

Can JINI Support Highly-Available Distributed Applications? Yes, in fact Prototype 6 demonstrates
that JINI can be utilized to architect solutions that are highly available.

Can JINI Support an Environment with Dynamic Clients and Replicated Services?
Will Clients Continue to Operate Effectively if Replicated Services Fail? Yes, in Prototype 6, it was
possible to start and stop clients and stop and start resources. As long as JINI was given time to remove
“failed” services, the clients and resources continued to interact effectively.

Can JINI be Utilized to Maintain “minutes-off’ Data Consistency of Replicas? Prototype 6 with the
pre-lookup guaranteed that no updates would be lost if different clients attempted simultaneous updates.

The results are extremely relevant for present and future Army systems, and for distributed enterprise applications,
in general, since the dlfferent architectural components of the prototypes can be cast as a new Java GUI, a legacy
relational databases wrapped using JDBC/ODBC, and databases for authorization and general purpose information
of interest to clients.

Second, is JINI Ready for Prime Time? That is clearly the question of interest. In our limited, yet concentrated
evaluation of JINI, we have found many features that make it extremely attractive as a 2lSt century technology. Our
reasons for believing JINI is ready for prime time include:

1. Compatibility of JINI with Java write once run anywhere infrastructure. The Java language and
environment under which JINI operates is extremely homogenous, is operating system independent, and
promotes interoperability between all of the components (clients and services) within the distributed
application.

2. Commitment of Sun to Java and JINI technologies, as evidenced by a recent keynote address by
Chief Scientist Bill Joy [BJOY]. There is a significant commitment to JINI by Sun, and an expectation
that JINI will play a major role in the Java arena in the coming years.

3. Understandability and ease of use of JINI. The individuals doing development had Java and database
expertise, but no background in using JINI, Visual Cafk, and JDBC/ODBC. In 400 hours of work over the
two month period of the work, six prototypes were designed and developed This speaks to the ease of use
of Java and JINI technologies.

4. High-level abstraction nature of JINI API. From a software engineering perspective, one of the major
strengths of JINI is the ability to design a solution to a distributed application in terms of clients and the
services that are required. This design can be constructed using a UML modeling tool. We believe that
with JINI, UML modeling tools, and Java development environments, good software engineering practices
and products can be attained.

However, our enthusiasm must also be tempered by the fact that our investigation, exploration, and evaluation of
JINI is only in the initial stages. While our experiences have been mostly positive, there are a number of future work
topics that must be explored in detail to arrive at a definitive conclusion.

Interoperability of JINI with critical technologies. Will JINI work with legacy, COTS, and database
assets? Will JINI inter-operate with CORBA and other distributed computing solutions? Can JINI and
software agent paradigms successfully interact? All are critical to assess JINI’s utility in 2lSt century.

5

JINI: A Technology for 21St Century?

Verification of write-once-run-anywhere. Is prototype of Section 3 extensible to Win95/98 and Solaris?
Will Oracle, Informix, and other database platforms work? JINI’s readiness for 2lSt century must be
verified by conducting multi- and heterogeneous platform experiments.

Utility/robustness of other JINI technologies. The list includes two-phase commit transactions, events in
JINI, JINI’s security model, and JavaSpaces, an API on top of JINI.

High-availability via multiple lookups and pre-lookup services. Great care must be taken to explore,
design, and implement prototypes that allow the incorporation of multiple lookup/pre-lookup services to
have a reasonable and manageable impact on client applications.

Performance and scalability. While our prototypes worked with 3 NTs, in practice, lOs, lOOs, and even
1000s of clients and resources will need to interact. Consequently, the ability of JINI to scale and maintain
performance in such a situation will be crucial.

Also, it is important to note that the JINI specification continues to evolve [JINISPEC]. Despite this cautionary note,
based on our experiences and intuition, we believe that JINI has great promise and will be a successful and useful
technology for the 2lSt century.

References
[Am0991 K. Arnold, et al., The JINI SpeczJication, Addison-Wesley, 1999.
[Edwa99] K. Edwards, Core JINI, Prentice-Hall, 1999.
[Free991 E. Freeman, et al., JavaSpaces Principles, Patterns, and Practice, Addison-Wesley, 1999.

[Morr97] M. Morrison, et al., Java Unleashed, second edltion, Sams.net Publishing, 1997.
[Wald99] J. Waldo, “The JINI Architecture for Network-Centric Computing”, Communications of the ACM, Vol.
42, No. 7, July 1999.
[BJOY] <
[JINI] httw, ://www. sun. codjinil
[JINIARCH] 1
[JINISPEC] httli://WWW.suIi.com/jiiliisuecsii~ilil 1 slnec.htm1

Sample JINI Software:
and httw,://wwww. artima. c o d i a v a a

and hr t ://rnenibers.horne.~ier/‘e~ tema

JINI Tutorial:
3
JINI-Related Information and Links:
httu :iiuww. jini.org and http://uww.eli. sdsu.edulcoursesisw,rina99/cs696/1iotesiindex.html

and 1
Link for JINI Installation:
:

6

http://Sams.net
http://jini.org
http://uww.eli

e
0 u
2
E
E-

2
E-

Td cti
0
d
& s
0

m *
4

0 .

X
(d
k

0
3

0 a a
5
cn I

6)

U

6) s

U

m a as-
o w

a s k mas

1 as m

T r

J

m

h

Ql
V
>
Ql
v)

m-

L

G
0

* *
I

t

m a a
Fr,
0
c,

6)

6)

6)
0
0

0

5
* w
I

0
6)

8

L
m

od

U

x
m
d)

I

I

e-

c-•

CY3
k
&)

0"
0
c,

t '

6)
5
G

G
0

* w
c,

0
c),
c1,
3 cn
n

e- u
cn

3

d
N

m

E
3 m

CCI
E
dcs
dcs
i+

b4

m'
W

A Classification of Software Components Incompatibilities for

COTS Integration

Daniil Yakimovich@ Guilherme H. Travassos@’* Victor R. Basili@’@
dyak@cs .urnd. edu travassos@cs.urnd.edu basili@cs.urnd.edu

8 Experimental Software Engineering ‘Computer Science and System ‘Fraunhofer Center - Maryland
Group Engineering Department 3 115 Ag/Life SciencedSurge Bldg.

Department of Computer Science COPPE University of Maryland
College Park MD 20742 University of Maryland at College Park

College Park, MD 20742

Federal University of Rio de Janeiro

Rio de Janeiro ~ RJ ~ 21945-180
A.V. Williams Building C.P. 685 11 - Ilha do Fundiio 30 1-405-4770

USA Brazil

ABSTRACT

Integration of software components into a system can be hindered by incompatibilities between
the components and system. To predict the possible incompatibilities and the ways to
overcome them during the integration activities, a classification of incompatibilities can be
useful for software developers. This can be especially crucial for COTS-based software
development, where a software system is being built out of potentially highly heterogeneous
software components. The resulting system can have a complicated architecture due to the
diversified nature of its components (e.g., a message-based system with object-oriented and
procedural sub-systems), and the architectural incompatibilities of the COTS products must be
overcome. Moreover, the functionality of the COTS software products must be taken into
account during COTS integration. In this paper we present a classification of incompatibilities
based on the properties of local component interactions. We believe that this classification can
capture possible problems about software component integration in heterogeneous software
systems, including architectural and functional issues.

1. INTRODUCTION.

Commercial-off-the-shelf software is developed by a third party and intended to be part of a new
software system [McDermid, Talbert 971. Usage of COTS products is growing, because developers
hope that it will increase their systems quality and reduce development time. However, COTS
based development implies specific problems (such as selection, integration, maintenance, and
security) whose solutions can be illustrated by answering the following questions:

-

-

-

-

How to select the most suitable COTS product in the market?

How to integrate the COTS product into the new system?

How to maintain a system that has components developed outside?

How safe a COTS software product is?

These are just a few problems. In this paper we are going to discuss COTS integration and its
impact on COTS selection. The importance of discussing COTS selection and integration show up
when considering that COTS products are developed to be generic, however, being integrated into
a system, they are used in a specific context with certain dependencies. The existence of
mismatches between the COTS product being integrated and the system is possible due to their

1

mailto:travassos@cs.urnd.edu
mailto:basili@cs.urnd.edu

different architectural assumptions and functional constraints. These mismatches must be overcome
during integration and they have to be identified even earlier. Thus, a classification of mismatches
or incompatibilities can be useful for COTS selection and integration.

There are some publications exploring integration architectural issues. For instance, [Gacek et al.
951, [Shaw 951, [Shaw, Clements 961 identify and classify architectural mismatches and styles.
[Abd-Allah, Boehm 961 and [Gacek 981 deal with heterogeneous architectures. This is especially
important for COTS development because a COTS-based software system can be built out of
potentially highly diversified software components, which can result in a heterogeneous
architecture (e.g., a message-based system with object-oriented and procedural sub-systems) for the
software system. However, not just architectural mismatches must be considered for integrating
COTS, but also the required functionality, non-functional constraints, and software developers
expertise level.

A COTS product can have gaps in required functionality, it can have incompatible interfaces,
different architectural assumptions, and it can conflict with other system components. Selecting
suitable COTS products for a project can require finding a trade-off between different mismatches
depending on the organization’s development capabilities. For example, if an organization has a
strong expertise in a functional domain but little experience in coping with architectural problems it
can consider acquiring COTS products with less required functionality but with few architectural
mismatches. On the contrary, if an organization is more experienced in architectures than in the
domain it should select COTS products with as much functionality as possible, although there can
be considerable architectural problems. The right selection can minimize the integration effort.

Therefore in this work we propose a general classification of possible types of mismatches between
COTS products and software systems, which includes architectural, functional, non-functional, and
other issues. We present a classification of incompatibilities based on the properties of local
component interactions. We believe that this classification captures possible problems about
software component integration in heterogeneous software systems. We expect that the
incompatibility classification can help to estimate the effort (cost) of the integration of the COTS
products prior to deciding about using a specific one. By utilizing it, software developers can
decide about a COTS product early in the software process, anticipating the possible integration
risks.

This paper has four sections including this introduction. Section 2 deals with the interactions and
how such concepts can be explored to identify incompatibilities. The third section explores the
whole model, showing which types of incompatibilities software developers should look for. Also,
a short example of using such a scheme is presented. Section 4 concludes this discussion and shows
some on going works regarding estimation of cost for COTS integration.

2. INTER-COMPONENT INTERACTIONS AND CLASSIFICATION.

The incompatibilities, for the context of this work, are essentially failures of components’
interactions, so fiiding and classifying these interactions will help to find and classify the
incompatibilities. We consider three aspects of inter-component interactions and incompatibilities:
type of interacting component, layer (syntax or semantic-pragmatic), and number of components
participating in the interaction.

2

First, the components interact with other system components, and with the system
environment. System components can be either software or hardware (excluding everything related
to the environment, such as CPU and memory, but including devices directly controlled by the
system, such as on-board devices) that are used by the software system. The environment can be of
the development phase, which includes compilers, debuggers, and other development tools, or it
can be the environment of the target system, which includes Operating Systems, virtual machines
(such as Java), interpreters (such as Basic), and other applications and utilities used by the target
system. The parts of both environments can also be considered components. Figure 1 shows the
different perspectives that can be used to classify these software component interactions.

System Environment

Figure 1. Interactions of software components.

Software Hardware

Then two main layers can be differentiated in the inter-component interactions:

Development Target

Syntax, defines the representation of the syntax rules of the interaction, e.g., the name of
invoked function; the names, types, and the order of the parameters or data fields in the
message, etc. For instance, float SQRT(float x) represents a C notation for a function called
"SQRT" returning a real result and with one argument, a real number x.

Semantic-pragmatic, defiies the functional (semantic and pragmatic) specifications of the
interaction, i.e., what functionality is performed by the component, e.g., invoking the function
"SQRT" calculates the square root of its only argument and returns it to the caller. However, in
this work we do not consider semantic and pragmatic issues separately.

Finally, an incompatibility can occur in an interaction involving a certain number of
participating components. A syntax incompatibility can occur because of syntactic difference
between two components, but a semantic-pragmatic incompatibility can be caused either by just
one component, two mismatching components, or three or more conflicting components. Thus,
incompatibilities of the semantic-pragmatic layer can be classified according to the exact number of
components that caused the interaction to fail. Therefore, the following types of semantic-
pragmatic incompatibilities can be considered:

1-order semantic-pragmatic incompatibility, or an internal problem, if a component alone
has an incompatibility disregarding the components it is interacting with. It means that the
component either does not have required functionality (not matching the requirements) or its
invocation can cause a failure (an internal fault).

3

2-order semantic-pragmatic incompatibility, or a mismatch, if an incompatibility is caused
by interaction of two components. Both components may not have 1 -order incompatibilities
and can work correctly in other contexts. For example, a procedure that calculates the square
root of a real number receives a negative argument from a caller that supposes that this is a
valid output.

Type of component I System

N-order semantic-pragmatic incompatibility, or a conflict, if an incompatibility is caused by
interactions of several components. There may not be semantic-pragmatic 1 -order and 2-order
incompatibilities for these components, but their cumulative interaction can cause a failure. For
example, several processes together require more memory than the available amount, although
each of them can be satisfied independently, so there is an n-order incompatibility on the
semantic-pragmatic layer in interactions with the target platform.

Environment

According to the assumptions above, syntactical and semantic-pragmatic incompatibilities can
occur in the system and environment dimensions. Table 1 captures this classification, where the
cells are described below.

Svntax 1 . I 2.1 3.1 4.1
Semantic-pragmatic I-order
Semantic-pragmatic 2-order
Semantic-pragmatic n-order

1.2a 2.2a 3.2a 4.2a
1.2b 2.2b 3.2b 4.2b
1.2c 2.2c 3 . 2 ~ 4 . 2 ~

1. Interactions with software

1.1. Syntax:

one cell capturing the idea of syntax issue for software in Table 1, its contents allows the
identification of differenceshncompatibilities regarding:

Three different types of syntax incompatibilities can be described here. Although there is only

Information flow, e.g., control instead of data.
Binding: static, dynamic compile-time, dynamic run-time, topological, etc. As the result
a component can not find another one.
Interface protocol: different number of parameters or data fields, or different types of
parameters or data fields.

1.2. Semantic-pragma tic:
1.2.a. 1 -order: internal problem. These incompatibilities appear when the COTS product

does not match the required functionality (e.g. it does not perform a required function), or
due to its poor quality it still does not work properly (an internal fault). On the other hand, it
can be other software that is solely responsible for the failure of interaction with the COTS
product.
1.2.b. 2-order: different assumptions between two components, including the

synchronization issue. These incompatibilities are products of a mismatch between the
COTS product and other components surrounding it. Even when two components have
correct functionality they can fail to work together due to some differences. (e.g., one object
uses metric units, but another one uses inches, therefore the result can hardly be correct;
another example is a mismatch between an asynchronous and a synchronous component).

4

1.2.c. N-order: a conflict between several software components. Even when the COTS
product works correctly itself and correctly interacts with other components, some
incompatibilities can appear as the result of a combined interaction with several other
software components. (e.g., an object that controls rotation of a spacecraft receives the
command for rotating on n degrees from a commanding object, but occasionally there is
another commanding object, which sends the same command at the same time, in the
system. Every single interaction is correct, but the spacecraft rotates twice as fast as it
should do.)

2. Interactions with hardware
2.1. Syntax:

Different type of protocol. A software component can not work with a piece of hardware,
because they assume different protocols (e.g. TCP/IP and Decnet or different port
numbers).

2.2. Semantic-pragmatic
2.2.a. 1-order: wrong functionality of hardware or the COTS component. A hardware
component does not work correctly (e.g. a printer does not support the Cyrillic alphabet), or
the COTS component causes a failure.
2.2.b. 2-order: different assumptions between software and hardware. An interaction
between software and hardware components does not work correctly (e.g., a program tries
to print a Cyrillic text, but the printer has a different coding for the Cyrillic alphabet,
therefore the output will be unintelligible).
2.2.c. N-order: a conflict between several software components over hardware. An
interaction among several software components and a hardware component does not work
correctly (e.g., several applications simultaneously accessing a single printer).

3. Interactions with the Development Environment
3.1. Syntax:

Different components’ representation. The environment does not understand the packaging
of a software component (e.g., a C program can not be compiled by a Fortran compiler).

3.2. Semantic-pragmatic:
3.2.a. 1-order: wrong functionality of the environment or the COTS component. The
environment does not work properly (e.g., a defect in the compiler version), or the
component has an error (e.g., a program can not be compiled because of a syntax error in
it).
3.2.b. 2-order: different assumptions between the software component and the

environment. A software component can not interact with the environment (e.g., a program
is written in an old dialect of the language and can not be compiled by a newer compiler).
3.2.c. N-order: a conflict between several software components over the environment. An

interaction among several software components and the development environment causes
an incompatibility (e.g. two or more C modules can not be compiled or linked together
because of a name collision).

4. Interactions with the target environment
4.1. Syntax:

Platform type. The environment does not understand the packaging of a software
5

component (e.g., a program uses another OS, or an interpreter can not run a program written
in another language).

4.2.a. 1-order: wrong functionality of the environment or the COTS component. The
environment does not work properly (e.g., the OS crashes), or the component has an error
(e.g., a memory violation in a program).
4.2.b. 2-order: different assumptions between the software component and the environment.
A software component does not interact with the environment correctly (e.g., a different
version of the OS version performs some functions used by the component in a way other
than expected by the component’s developers).
4.2.c. n-order: a conflict between software components over the environment, including the
control issue. An interaction among several software components and the environment
causes an incompatibility (e.g. a conflict between two object-oriented frameworks in a one-
process program for the control flow [Sparks et al. 961).

4.2. Semantic-pragmatic:

3. TYPES OF INTEGRATION PROBLEMS.

Different incompatibilities have different solutions, but generally we can find five groups of related
problems with the proper solution strategies. We assume that one type of incompatibilities can
cause problems in different groups. For example, a syntax software incompatibility can cause
different types of binding, which can require a special architectural solution for the whole system,
or it can be just a different order of parameters, which can be overcome by a simple wrapper. Thus,
we can differentiate the following groups of integration problems:

Functional. All the 1 -order semantic-pragmatic incompatibilities that are caused by missing or
wrong functionality. Re-implementation or modification of faulty components can solve these
problems.

Non-functional. Some 1 -order semantic-pragmatic incompatibilities can be caused by not
matching to non-functional requirements, such as reliability, maintainability, efficiency,
usability, etc. These problems are difficult to solve without reworking the component.

Architectural. These issues constitute another class of problems and can cause changing the
overall system’ s architecture, but the incompatibilities causing them are different. In this work
we consider the following architectural assumptions of software components with their
respective incompatibilities: packaging (syntax development and target environments), control
(n-order semantic-pragmatic target environment), information flow (syntax software), binding
(syntax software), synchronization (2-order semantic-pragmatic software) [Shaw 951,
[Yakimovich et al. 991.

Conflicts. Problems of this type are conflicts between components in the system (e.g.,
deadlocks). The related incompatibilities are n-order semantic-pragmatic software and
hardware. The possible solutions can include changing the system’s configuration without
changing the overall architectural type (minor architectural changes, including monitoring
components) and using glueware.

Interface. These problems are incompatible interfaces between the components caused by
some syntax and 2-order semantic-pragmatic software and hardware incompatibilities (other

6

than major architectural). The possible solution is glueware.

Another property of this high-level classification is that the classes of problems are specific to the
particular development phases. Functional and non-functional issues require information on the
project and COTS product functionality, which is available early in the requirements analysis
phase. Architectural issues are dealt with during the design phase when the system’s architecture is
being designed. Conflicts and interface issues are addressed later in the design phase when the
system’s architecture and the component’s interfaces are known.

Let us consider the following example to illustrate our approach; a 3D-graphics engine is being
chosen for a real-time system. The system being developed imposes the following high-level
requirements for the graphics engine:

Functionality: drawing 3-dimensional objects, including input and output 3D images from files.
Non-functional issues (portability): Mac.
Architectural issues (development platform): Ada 95.
Interfaces (example of a function): procedure Rect(x, y, w, h: Real); where (x,y) - the coordinates
of the left bottom corner of the rectangle; w - its width; h - its height; output - drawing a rectangle.
Other specifications, such as non-functional requirements, hardware requirements, possible
conflicts, etc., are not considered in this example.

The possible candidate COTS products are OpenGL, QuickDraw3D, and DirectX [Thompson 961.
Matching them against the requirements gives the following data:

OpenGL:

Functionality: the drawing functions are provided, input and output from files is not
supported - 1 -order semantic-pragmatic incompatibility.
Non-functional issues (portability): Mac platform is supported.
Architectural issues (development platform): an Ada implementation is available.
Interface: procedure glRectf(x 1 : GLfloat; y 1 : Glfloat; x2: Glfloat; y2: GLfloat); where
(x1,yl) - the coordinates of one vertex of the rectangle; (x2,y2) - the coordinates of the
opposite vertex of the rectangle. There are a syntax incompatibility (different procedure
names) and a 2-order semantic-pragmatic incompatibility (different interpretations of the
arguments) with software components.

QuickDraw3D:

Functionality: drawing provided, input and output from files is supported.
Non-functional issues (portability): Mac platform is supported.
Architectural issues (packaging): Ada 95 implementation is not available - 2-order
semantic-pragmatic incompatibility with the development platform.
Interface: it is not necessary to consider it, because it is expensive to use QuickDraw3D due
to the different packaging.

DirectX:

Functionality: drawing provided, input and output from files is supported.
Non-functional issues (portability): Mac platform is not supported - 2-order semantic-
pragmatic incompatibility with the target platform.

7

Architectural issues (packaging): Ada 95 implementation is not available - 2-order
semantic-pragmatic incompatibility with the development platform.
Interface: it is not necessary to consider it, because it is extremely expensive to use DirectX
due to the different packaging and target platform.

The result of this comparison is that OpenGL is the best candidate, despite certain incompatibilities
that can be overcome using glueware and re-implementation. Use of C-implemented QuickDraw3D
would require changing the system's architecture. Use of DirectX would require porting it to Mac,
which is hardly a real operation.

4. CONCLUSIONS AND ON-GOING WORKS.

In this paper we presented a classification of incompatibilities between software (including COTS)
components and other parts of a software system. This classification is intended to find the possible
problems, including functional, architectural, non-functional, conflict, and interface, when a COTS
software component is being integrated into a system. We hope that the incompatibility
classification and the effort estimation approach can be useful for software developers to evaluate
and integrate COTS software.

We have given above a classification of possible incompatibilities between the software (COTS)
and other system components. However, to select a COTS product, developers must also know the
effort required for overcoming these incompatibilities. To estimate the integration effort developers
have to answer the following sequence of questions:

- What are the incompatibilities? - What is the difference between the system's requirements and
the COTS products. This difference can be found using approaches, such as the comprehensive
reuse model [Basili, Rombach 911.

- How are they to be overcome? - What integration strategies can be used by the developers to
integrate the COTS software products (e.g., re-implementation, glueware, changes of architecture).

- What is the amount of integration work? - This is a quantitative estimation of the two items
above; how much work is to be done to fill a certain gap.

- What is the productivity (skill) of the developers for the applied integration strategy? - This
reflects the skill of the developers with respect to particular integration tasks. The higher it is, the
faster they can perform the same amount of work. It can be possible to define techniques in
different strategies, for example, re-implementation using object-oriented, procedural, or another
paradigm. Specifying techniques within the strategies will demand more data about the
organization, but on the other hand, the analysis will be more fine-tuned.

- What is the effort required for overcoming a particular incompatibility between a COTS product
and the system? - This is obtained from the previous two items by dividing the amount of work by
the productivity.

- What is the total effort required for integrating a COTSproduct? - This is the sum of the efforts
required for resolving all the incompatibilities between the COTS product and the system.

8

Essentially, this is a bottom-up effort estimation model: each of the COTS product components is
analyzed with respect to all its possible interactions with system to be integrated in. If an
incompatibility is found the effort to overcome is estimated based on the amount of integration
work and the productivity of organization for this type of work. The overall integration cost is the
sum of overcoming all the incompatibilities between the COTS product’s components and the
system. However, to develop this COTS evaluation approach we must find effective ways to
measure the productivity and the gap between the requirements and the system being developed.

As a research work, a process model for COTS selection, evaluation, and integration is being
defined incorporating the ideas showed in this paper. Some experiments have been planned to
empirically validate such a model. The results of these experiments, and the whole model, will be
described in future publications.

REFERENCES:

[Abd-Allah, Boehm 961 Abd-Allah, A., Boehm, B., “Models for composing heterogeneous software
architectures”, USC Technical report: USC-CSE-96-505, University of South California, Los Angeles,
August 1 9 9 6.

[Basili, Rombach 9 11 Basili, V., Rombach, H., “Support for comprehensive reuse”, Software Engineering
Journal, September 1991, pp. 303-316.

[Gacek 981 Gacek, C., “Detecting Architectural Mismatches During Systems Composition,” Doctoral
Dissertation, Center for Software Engineering, University of Southern California, Los Angeles, CA 90089,
December 1998.

[Gacek et al. 951 Gacek, C., Abd-Allah, A., Clark, B., Boehm, B., “On the definition of software system
architecture”, in the proceedings of the First International Workshop on architectures for software systems -
in cooperation with the 17* international conference on software engineering, Seattle, WA, 24-25 April

[Garlan et al. 951 Garlan, D., Allen, R., Ockerbloom, J., “Architectural Mismatch or Why it’s hard to build
systems out of existing parts”, Proceedings of International Conference on Software Engineering, 1995,
Seattle, WA, USA, pp. 179 - 185.

[McDermid, Talbert, 971 McDermid, J., Talbert, N., “The Cost of COTS” (interview), Computer, June 1997,

[Shaw 951 Shaw, M., Architectural Issues in Software Reuse: It’s Not Just the Functionality, It’s Packaging,
Proceedings of the Symposium on Software Reusability, 1995, Seattle, WA, USA, pp. 3-6.

[Shaw, Clements, 961 Shaw, M., Clements, P., “A field guide to boxology: preliminary classification of
architectural styles for software systems”,
http : //www .cs. cmu.edu/afs/cs. cmu.edu/proj ect/vit/www/paper-abstract dB oxology . html, Computer Science
Department and Software Engineering Institute, Camegie Mellon University, 1996.

[Sparks et al. 961 Sparks, S., Benner, K., Faris, C., “Managing Object-Oriented Framework Reuse”, IEEE
Computer, September 1996, pp. 52-61.

[Thompson 961 Thompson, T., “Must-See 3-D Engines”, Byte, June 1996, pp. 137-144.

[Yakimovich et al. 991 Yakimovich, D., Bieman, J.M., Basili, V.R., “Software architecture classi fication for
estimating the cost of COTS integration”, Proceedings of the 2 lst International Conference on Software
Engineering, Los Angeles, USA, 1999, pp. 296 -302.

1995, pp. 85-95.

pp. 46-52.

9

!w
0 c.

Q)
!w a
P
G
0
Gn
c.
0

Gn
Q)

d
0

a
0 , *

u2

u2
u2

0 k e 4
0
*r >
0
E
3 ce

W

2k
5 8

m 0
*r Td

d 3
Gn 2

2
rcl
0

0 u
n *

d
Q)
d
0

B
0
c)

c)

4

m
d)

G
0

a
0 4

I a
k
I m
G
0

a
0 4

I

fir

E"
d)

0

Td
G a

s
&

m
m 24

k
0 4

k
E
1

a
c)
1

2 I

Q) bs)
d)

0

d) d)
k

1 a a a
%
0
d)
1

a E"

a-
s m

c)
d) m

b
0

1

d)
m
m 0
b d) 0 x

P4
1 r 7

b 0 P4 0 u
0 0 0 0 0 0 0

U

ll P
h
c6
1
1

0 4

I

c)
k
0
E
E
0
c)

I

C
1

c)
I
0
c\

h I
0 4

k
3

0
A m

I

2 I

cc:
0
I

c)
0 W

a %
5 8 m m

1

0 4

c6 0
c)
k 0

I 0 0
k G

U

6
0

0 4

I

E
E
0

0
h
I c)

W
1

0 4

I
c6 0 4

1
c6
3

c)
0 m m

Q) b
0

0 3
m
m
H

Y m c6 0
L u

m
Q) s
m
m

Q)

E
0 ,

Q)

k

2
6
0

W

m
I

G

0
2
E
0

E
0

a
0 , *

bn
G

0

0 4

E 0
0
m
b

0
k

E
0
I m

m h
0 1

1
c6
k e
8
&

m
I

*
E u

0
0 W

A
Td
G
c6

I

m
I

2k
5 8

E a 0-
I

0

E
0

0 , *
0

0 0 3
Td
0
&

m

2 I

0 a
3

3
E

A I m a)
0
I

b
0 0

0 u F4 m 1
0
m 0 0 0

0 c. c.

W

n
k
3
0
A

c6
85
I m
\ u
0
1
W

cr u a
0
k a a a

W

2k
5 8

E
0 , * u
Q) *

0 ,
E
c.
0
m
Q)

m *
E
Q)

0

E
0 u

0
m

r

I

I

W

k
Q)

k
G
E

2 I

k
0
m
0

3 k
x
c6
G
h

1

I

m

2 I

s
0
A

*
c3

I

-&

&
0

x
k
0 s
'E
3
G

0 4

I
c6
bl:

W

a %
5 8

3
0
G

8
c6
k
0

0
0

I

k

m
I 2 I

G
0

d
4

d) G

0
2
I?
0
0
0

k z
Td
G
c6

m
I
d u d)
G
0

E
0
0

s2

k

*N
W

d) a
d)

d) k * E d)
k
A
k
0
G
0

I

0 4

I

Q) ‘d
Lc

1 r 1

d) I
k
0
G
0

0 4

I

E
c.
0

0 ,

m
I

0 4

I
G

0
2
I?
0
0

W

d) a %
5 8 0 bn

c6
1 G 0 4

I E
0

0 0 k
Q)
h

3
E

c6
Lc 0 0

c6
k
d)
I
G

0 4

d)
I u

bn
c6
& I

k
0
k
d) s

u
-&

I I

L L 0 4 L 4 L E
3
G

d
I - d

&
0 0 0

G

G

G

3
5
I

0
L

G

0

a,
e

3
z
c,

&
h c,

hj
k

W

a %
5 8 E

c.
0

0 ,

m
c, m

0
bn
c6
3

a,
0

0
k

* +

+

E
0
k bs)

G
c6

c
1

I

r

E" a
0 . .

m
m
a,
0

0
k & 0 ce 4

0 0

m
Q)

m
m
c.
0

3
0 ,

a -
F
1

0

0

0 .-

W

E
0

0

0
1

I m
h

W

n
cc,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 CJ
4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0

u
* + c,

t;
a, x rcl

a .
h a

N

x s I

W

c) u
d CJ

4

aJ
h

c) 4
t;
a, x c n l

* + I 3
3
'N

aJ
c) 0

w
'N
h m a x

0

w x
'N
h

$

x
3

x
3

x s x s

0 I

0
k
c6

G
0
m
G
0

I
0 s

Td

0 0

I

0
0

m
m
c6
1
0
m

0 0

W

Appendix A - Workshop Attendees

Abraham, William L
Abshire, Gerald
Allen, Theodosia
Amacher, Aaron G
Ammari, Habib
Anderson, Allan
Anderson, Frances E
Arrighi, Heather
Aydinlioglu, Baris
Ayers, Everett
Bae, Youn Y
Ballard, Ben
Basili, Victor R
Batluck, Georgiann
Becker, Greg
Beifeld, David
Bergmann, Seth
Blazek, Ronald P
Blazy, Louis J
Blundell, Paul
Bobo, Jack A
Boger, Jacqueline
Bonas, Rachael
Brandenburg, Wilber
Brown, Patrick
Budlong, Faye C
Carver, Jeff
Caulfield, Margaret I
Centa, Alan
Chambliss, Sandra H
Charron, Daniel
Chien, I-Ming Annie
Chiverella, Ron

Rowan University
Computer Sciences Corp
IRS
ICE
WV University
Hughes Network Systems
IIT Research Institute
Raytheon ITSS
University of Maryland
Ayers Associates
NASA/GSFC
JHU/APL
University of Maryland
NASA/GSFC
QSS
Unisys Corp
Rowan University
AlliedSignal
NASA IV&V
Programming Research
ICE
csc
Howard University
NASA/GSFC
MITRETEK Corp
C.S. Draper Lab
University of Maryland
NASA/GSFC
NASA/GSFC
AlliedSignal Aerospace
CAE Electronics Ltd
Computer Sciences Corp
Highmark, Inc

Choates- Workman, Mary SOLIPSY S
Chu, Martha JHU/APL
Chu, Richard Lockheed Martin Corp
Chung, John Computer Sciences Corp
Cingel, Keith ARINC
Coleman Dangle, K Fraunhofer Maryland

willeonabe@msn.com
gabshire@cscmail.csc.com
theodosia. 1. allenam 1 . irs. gov
agamache@aol.com
ammari@csee.wvu,edu
aanderson@hns.com
fandersonaiitri. org
harrighi@pop600.gsfc.nasa.gov
baris@cs.umd.edu
[No Email Address]
youn.y.bae@gsfc.nasa.gov
ben. ballard@j huapl. edu
basili@cs.umd.edu
batluck@tiffy.gsfc.nasa.gov
gbecker@pop200.gsfc.nasa.gov
dbeifeld@pop300.gsfc.nasa.gov
bergmann@rowan.edu
blazekr@rmtva.grbmd-pO 1
louis.blazy@iw.nasa.gov
paulblundell@prqa. co.uk
[No Email Address]
j boger@cscmail. csc. com
rbonas@hotmail.com
bbranden@pop700. gsfc.nasa. gov
pbrownamitretek. org
budlong@draper.com
[No Email Address]
margaret.caulfield@gsfc.nasa.gov
acenta@pop500.gsfc.nasa.gov
Sandra. chambliss-nontnv@tnv.com
[No Email Address]
ichien@cscmail.csc.com
ronald. chiverellaahighmark. com
mary.workman@solipsys.com
martha. chu@j huapl.edu
rchu@v2pop. hst.gsfc.nasa.gov
j chung@csc. com
kac@arinc.com
kdangle@fiaunho fer.org

mailto:willeonabe@msn.com
mailto:gabshire@cscmail.csc.com
mailto:agamache@aol.com
mailto:aanderson@hns.com
mailto:harrighi@pop600.gsfc.nasa.gov
mailto:baris@cs.umd.edu
mailto:youn.y.bae@gsfc.nasa.gov
mailto:basili@cs.umd.edu
mailto:batluck@tiffy.gsfc.nasa.gov
mailto:gbecker@pop200.gsfc.nasa.gov
mailto:dbeifeld@pop300.gsfc.nasa.gov
mailto:bergmann@rowan.edu
mailto:louis.blazy@iw.nasa.gov
mailto:rbonas@hotmail.com
mailto:budlong@draper.com
mailto:margaret.caulfield@gsfc.nasa.gov
mailto:acenta@pop500.gsfc.nasa.gov
mailto:chambliss-nontnv@tnv.com
mailto:ichien@cscmail.csc.com
mailto:mary.workman@solipsys.com
http://huapl.edu
http://hst.gsfc.nasa.gov
mailto:kac@arinc.com

Colyandro, Anthony T NASNGSFC
Conradi, Reidar
Cook, John F
Cowan, James L
Crispell, Michele
Curto, Paul
Daddio, Ernest
De Fainchtein, R
Decker, William J
Delguercio, Vincent
Demurjian, Steve A
Den, Patricia K
Derrick, Deborah
Dhama, Harpal
Djidji, Domou F
Doyle, Richard J
Drake, Anthony
Duo, Jing
Dwyer, A1
Eickelmann, Nancy
Elderkin, Renee
Ellis, Walter J
Evangelist, Michael
Fakory, Reza
Ferrell, Tom
Ferrell, Uma D
Florence, Alfred W
Frey, Michael
Fulmer, Dan
Futcher, Joseph M
Gantzer, Donald J
Garrahan, Jim
Gaston, Ralph
Gentle, Karen L
Gilbert, Jacqueline
Girma, Antenem
Glazener, Steve
Godfrey, Pat
Gomez, Sue
Gopalan, Venkat R
Graham, Scott R

NTNU
NASNGSFC
DISA
SATC
NASNHQ
NOAA
Raytheon
Computer Sciences Corp
FAA Technical Center
University Connecticut
Dept. of Commerce
Computer Sciences Corp
The MITRE Corp
Howard University
Jet Propulsion Lab
Raytheon ITSS
General Sciences Corp
Raytheon ITSS
NASA IV&V Facility
Computer Sciences Corp
Software Process & Metrics
National Science Foundation
Computer Sciences Corp
SAIC
Reliable Software Tech
The MITRE Corp
Fraunhofer Center-Maryland
[No Organization Registered]
Naval Surface Warfare Center
TRW
Computer Sciences Corp
Computer Sciences Corp
AlliedSignal T S
FBI
Howard University
L3Com
McCabe & Associates
AlliedSignal T S
DynCorp
U.S. Air Force

anthonyadao. gsc.nasa.gov
conradi@idi.ntnu.no
jcook@pop500.gsfc.nasa.gov
cowanj @ncr. disa.mil
mcrispel@pop3OO.gsfc.nasa.gov
pcurto@hq.nasa.gov
ernest. daddioanoaa. gov
rfaincht@gsfc.nasa.gov
wdecker@csc.com
vincent.delguercio@tc. faa.gov
steve@engr.uconn.edu
pderr@doc. gov
dderrick@cscmail.csc.com
dhama@mitre.org
djicars@yahoo.com
Richard.j .doyle@jpl.nasa.gov
adrakeadaac. gsfc.nasa. gov
j guo@dao. gsfc.nasa. gov
adwyer@pop3. stx. com
nancy.eickelmann@iw.nasa.gov
relderki@cscmail.csc.com
waltelli@erols.com
mevangel@nsf.gov
rfakory@v2pop. hst.nasa. gov
[No Email Address]
uferrell@rs tcomp. com
florence@mitre.org
mfrey@fc.md.umd.edu
[No Email Address]
j futcher@nswc.navy.mil
don. ctr. gantzerafaa. gov
j garraha@csc. com
rdgaston@erols.com
gentlek@atsc.allied.com
[No Email Address]
antuye@aol.com
[No Email Address]
[No Email Address]
sue. gomez@alliedsignal.com
gopalav@dyncorp.com
scott.graham@afotec.af.mil

SEW Proceedings SEL-99-002

http://gsc.nasa.gov
mailto:jcook@pop500.gsfc.nasa.gov
http://disa.mil
mailto:mcrispel@pop3OO.gsfc.nasa.gov
mailto:pcurto@hq.nasa.gov
mailto:rfaincht@gsfc.nasa.gov
mailto:wdecker@csc.com
mailto:steve@engr.uconn.edu
mailto:dderrick@cscmail.csc.com
mailto:dhama@mitre.org
mailto:djicars@yahoo.com
mailto:doyle@jpl.nasa.gov
mailto:nancy.eickelmann@iw.nasa.gov
mailto:relderki@cscmail.csc.com
mailto:waltelli@erols.com
mailto:mevangel@nsf.gov
mailto:florence@mitre.org
mailto:mfrey@fc.md.umd.edu
mailto:futcher@nswc.navy.mil
mailto:rdgaston@erols.com
mailto:gentlek@atsc.allied.com
mailto:antuye@aol.com
mailto:gomez@alliedsignal.com
mailto:gopalav@dyncorp.com
mailto:scott.graham@afotec.af.mil

Green, Scott
Habetz, Marco
Halvorsen, Christian
Helm, James C
Herndon, Thomas S
Hillelsohn, Michael
Hines, Tonjua
Houchens, Connie M
Houdek, Frank
Howlett, Alan
Hughes, Peter
Iona, Glenn
Jackson, Anthony
Jamison, Donald
Jeffery, Ross
Jeletic, Jim
Jeletic, Kellyann
Jing, Yin
Jordano, Tony J
Kassebaum, Kass
Kea, Howard E
Kelley, Ken
Kelly, John C
Kelly, Michael
Kelly, Vernon
Kieckhefer, Ron
Kim, Yong-Mi
Koslosky, Anne Marie
Kotov, Alexei
Kraft, Steve
Kuykendall, Frank
Landis, Linda C
Lane, Martha
Leake, Steven
Lee, Anthony A
Lee, Michael H
Lee, Roger A
Legg, Jim
Li, Nelson
Lin, Chi Y
Lindvall, Mikael

NASNGSFC
Fraunhofer Center-Maryland
NTNU
University Houston-ClearLake
Computer Sciences Corp
Software Performance Systems
NASNGSFC
NASNGSFC
Daimler Chrysler AG
T.Rowe Price
NASNGSF
NASNGSFC
SATC
NASNGSFC
University of New South Wales
NASNGSFC
NASNGSFC
Computer Sciences Corp
SAIC
Process & Change Management
NASNGSFC
Consultant
Jet Propulsion Lab
Computer Sciences Corp
SAIC
Computer Sciences Corp
Q-Labs, Inc.
NASNGSFC
Software Process & Metrics
NASNGSFC
Jet Propulsion Lab
Computer Sciences Corp
FBI
NASNGSFC
Marconi Systems Technologies
NASNGSFC
Jet Propulsion Lab
Raytheon
GST
Jet Propulsion Lab
Fraunhofer Center-Maryland

sgreen@pop500.gsfc.nasa.gov
mhabetzafc-md.umd. edu
cph@idi.ntnu.no
helm@cl.uh. edu
therndon@csc.com
hillelsohn@gosps.com
thines@pop5 00. gsfc.nasa. gov
chouchen@pop5 00. gsfc.nasa.gov
frank. houdek@daimlerchrysler.com
ahowlett@troweprice.org
phughes@pop500.gsfc.nasa.gov
giona@rattler.gsfc.nasa.gov
ajackso@pop3OO.gsfc.nasa.gov
djamison@pop5 0O.gsfc.nasa. gov
rossj @cumulus.csd.unsw. oy. au
jjeletic@pop500.gsfc.nasa.gov
kjeletic@pop500.gsfc.nasa.gov
yin.jing@cscgt.gsfc.nasa.gov
anthony.j.jordano@saic.com
kkass@erols.com
hekea@pop500.gsfc.nasa.gov
conoy@erols.com
john.c.kelly@jpl.nasa.gov
mkelly2 1 @cscmail.csc.com
kelly@saic.com
rkieckhe@cscmail. csc.com
yong-mi.kim@q-labs.com
anne.koslosky@gsfc.nasa.gov
kotov@cse. ogi. edu
stkraftapop5 00. gsfc.nasa. gov
frank.kuykendall@jpl.nasa. gov
llandis@.csc.com
[No Email Address]
stephen.leake@gsfc.nasa.gov
leeatst. tracor.com
michael. h.lee@gsfc.nasa.gov
roger.a.lee@jpl.nasa.gov
jim.legg@gsfc.nasa.gov
[No Email Address]
chi.y.lin@jpl.nasa.gov
mlindvall@fraunho fer.org

SEW Proceedings SEL-99-002

mailto:sgreen@pop500.gsfc.nasa.gov
mailto:therndon@csc.com
mailto:hillelsohn@gosps.com
http://gsfc.nasa.gov
mailto:houdek@daimlerchrysler.com
mailto:ahowlett@troweprice.org
mailto:phughes@pop500.gsfc.nasa.gov
mailto:giona@rattler.gsfc.nasa.gov
mailto:ajackso@pop3OO.gsfc.nasa.gov
mailto:jjeletic@pop500.gsfc.nasa.gov
mailto:kjeletic@pop500.gsfc.nasa.gov
mailto:yin.jing@cscgt.gsfc.nasa.gov
mailto:anthony.j.jordano@saic.com
mailto:kkass@erols.com
mailto:hekea@pop500.gsfc.nasa.gov
mailto:conoy@erols.com
mailto:john.c.kelly@jpl.nasa.gov
mailto:cscmail.csc.com
mailto:kelly@saic.com
mailto:yong-mi.kim@q-labs.com
mailto:anne.koslosky@gsfc.nasa.gov
mailto:llandis@.csc.com
mailto:stephen.leake@gsfc.nasa.gov
http://tracor.com
mailto:h.lee@gsfc.nasa.gov
mailto:roger.a.lee@jpl.nasa.gov
mailto:jim.legg@gsfc.nasa.gov
mailto:chi.y.lin@jpl.nasa.gov

Liu, Jean C
Lott, Christopher M
Lubelczyk, Jeffrey T
Ludford, Joe
Lyster, Peter M
MacKenzie, Garth R
Major, Melissa L
Marciniak, John J
Marjara, Amarjit
Maury, Jesse
McClinton, Arthur
McCormick, Scott
McDonald, James
McGarry, Frank E
McGibbon, Thomas
McLay, Robert
Mendonca, Manoel G
Meny, Fred
Milbank, Sam
Miller, Glenn
Miller, Roger N
Minor, Susan
Moleski, Walt
Morasca, Sandro
Morisio, Maurizio
Murphy, Hugh
Myers, Philip I
Nakano, Tetsuya
Narula, Nishi
Newton, Wally
Nichols, David
Noone, Estelle
Norcio, Tony F
O'Donnell, Charlie
O'Neill, Don
O'Reilly, Frank
Page, Gerald T
Pajerski, Rose
Panlilio-Yap, Nikki M
Paquin, Sherry
Parizer, Michael S

Computer Sciences Corp
Telcordia Technologies
NASNGSFC
White Hart Associates
University of Maryland
University of Maryland
Software Architects
Marciniak & Associates
Cap Gemini
Omitron, Inc
MITRETEK Systems
TMC/Marada
AlliedSignal T S
Computer Sciences Corp
DACS
University of Texas
University of Maryland
Dept. of Commerce
AlliedSignal T S
Space Telescope Science Inst.
General Dynamics
NASNHQ
NASNGSFC
Univeristy of Maryland
University of Maryland
AlliedSignal
Computer Sciences Corp
NASNGSFC
OAO Corp
Computer Sciences Corp
Jet Propulsion Lab
Computer Sciences Corp
University of Maryland-BCO
ECA, Inc
Consultant
Northrop Grumman
Computer Sciences Corp
Fraunhofer Center-Maryland
IBM
Litton Marine Systems
SATC

jcliu@cscmail.csc.com
c.m.lott@ieee.org
j lubelcz@pop5 00. gsfc.nasa. gov
j lud fordaradix . ne t
lys@dao. gsfc.nasa. gov
gmackenz@umuc . edu
major@software-architects.com
jmarcin222@aol.com
amarjara@hotmail.com
j esse.maury@omitron.com
art@mitretek.org
smccormick@marada-corp.com
mcdonaj @lskmpoo4.atsc.allied.com
fmcgarry@csc.com
tom.mcgibbon@ssc.de.ittind.com
[No Email Address]
manoel@cs.umd.edu
fmeny@doc.gov
samuel.milbarik@alliedsignal.com
miller@stsci.edu
rmiller@gdeb.com
sminor@hq.nasa.gov
moleski@kong.gsfc.nasa.gov
morasca@cs.umd.edu
morisio@cs.umd.edu
hmurphy@v2pop .hst.nasa. gov
pmyers@cscmail.csc.com
tnakanoapop5 00. gsfc.nasa.gov
nnarula. aoa. com
wbnewton@hotmail.com
david.a.nichols@jpl.nasa. gov
enoone@csc.com
norcio@umbc.edu
[No Email Address]
oneilldon@aol.com
oreilfr 1 @mail.northg".com
gpage@csc.com
paj erski@fc-md.umd.edu
niknak@erols.com
sap0 1 @cho.litton-marine.com
mparizer@pop3 00. gsfc.nasa. gov

SEW Proceedings SEL-99-002

mailto:jcliu@cscmail.csc.com
mailto:c.m.lott@ieee.org
mailto:major@software-architects.com
mailto:jmarcin222@aol.com
mailto:amarjara@hotmail.com
mailto:esse.maury@omitron.com
mailto:art@mitretek.org
mailto:smccormick@marada-corp.com
mailto:lskmpoo4.atsc.allied.com
mailto:fmcgarry@csc.com
mailto:tom.mcgibbon@ssc.de.ittind.com
mailto:manoel@cs.umd.edu
mailto:fmeny@doc.gov
mailto:samuel.milbarik@alliedsignal.com
mailto:miller@stsci.edu
mailto:rmiller@gdeb.com
mailto:sminor@hq.nasa.gov
mailto:moleski@kong.gsfc.nasa.gov
mailto:morasca@cs.umd.edu
mailto:morisio@cs.umd.edu
mailto:pmyers@cscmail.csc.com
http://gsfc.nasa.gov
mailto:wbnewton@hotmail.com
mailto:enoone@csc.com
mailto:norcio@umbc.edu
mailto:oneilldon@aol.com
mailto:mail.northg".com
mailto:gpage@csc.com
mailto:erski@fc-md.umd.edu
mailto:niknak@erols.com
mailto:cho.litton-marine.com

Parra, Amy T
Patton, K. Kay
Pavnica, Paul
Phillips, William G
Pisano, Jim
Pitman, Andrew
Pittarelli, Ernie
Potter, Marshall R
Pradeep, Cheriyath
Ramamurty, Geeta
Ray, Debasish
Regardie, Myrna L
Rifkin, Stan
Riley, Tom
Rodgers, Thomas M
Rohr, John A
Rombach, H.Dieter
Rosenberg, Linda H
Roy, Dan M
Rus, Ioana
Russell, Gabriella
Ryan, Charles J
Schneider, Laurie
Schulmeyer, Gordon G
Schultz, David J
Scott, Hester
Seablom, Michael S
Seaman, Carolyn B
Shami, Souha
Sharma, Jagdish
Shaw, Richard A
Shull, Forrest
Silver, Aaron N
Small, Donald
Smith, George F
Smith, James A
Smith, Sharon
Smith, Vivian A
Spaulding, Omar
Spencer, Todd
Squires, Burton E

Computer Sciences Corp
Computer Sciences Corp
Treasury - FinCEN
ARINC, Inc
National Radio Astronomy
Rowan University
Computer Sciences Corp
DoD ODUSD (S&T) IS
Raytheon Systems Co
Computer Sciences Corp
Nichols Advanced Marine
Computer Sciences Corp
Master Systems, Inc
NASNGSFC
Lockheed Martin Corp
Jet Propulsion Lab
FhG IESE
SATC Unisys
STP&P
Fraunhofer Center-Maryland
Dept. of Commerce
SEI
Price Waterhouse
PYXIS Systems Inter, Inc
Computer Sciences Corp
ALTA Systems, Inc
HSTX

aparra@csc.com
kpatton@csc.com
[No Email Address]
bphillip@arinc.com
jpisano@nrao.edu
ajp@torch.rowan.edu
epittare@csc.com
pottermr@acg.osd.mil
cpradeep@eos. hitc.com
gramamur@csc.com
rayd@nichols.com
mregard@erols.com
sramaster-systems.com
[No Email Address]
thomas.m.rodgers@lmco.com
john.a.rohr@jpl.nasa.gov
rombachaiese. fhg.de
linda.rosenberg@gsfc.nasa.gov
danroy@stpp. com
irus@fc-md.umd. edu
grussell@doc.gov
ryan@sei.cmu.edu
laurie.schneider@us.pwcglobal. com
pyxisinc@erols.com
dschultz@csc.com
hscottcricochet.net
seablom@gsfc.nasa.gov

University Maryland-Baltimore cseaman@umbc.edu
QSS/GSFC/NASA
NOAA
STSeI
Fraunhofer Center-Maryland
Raytheon Systems Co
AlliedSignal TS
Consultant
NASNGSFC
DoD
FAA
NA S AIH Q
Computer Sciences Corp
Consultant

souha.r.shami@gsfc.nasa.gov
j agdish. sharmaanoaa. gov
shaw@stsei.edu
fshull@fiaunhofer. org
ansilver@west.raytheon.com
donald.small@gsfc.nasa.gov
smithg@interpath.com
jasmith@hemlock.gsfc.nasa.gov
[No Email Address]
vivian.smith@faa.gov
ospauldi@hq.nasa.gov
tspences@cscmail.csc.com
squiresb@acm.org

SEW Proceedings SEL-99-002

mailto:aparra@csc.com
mailto:kpatton@csc.com
mailto:bphillip@arinc.com
mailto:jpisano@nrao.edu
mailto:ajp@torch.rowan.edu
mailto:epittare@csc.com
mailto:pottermr@acg.osd.mil
http://hitc.com
mailto:gramamur@csc.com
mailto:rayd@nichols.com
mailto:mregard@erols.com
http://sramaster-systems.com
mailto:thomas.m.rodgers@lmco.com
mailto:john.a.rohr@jpl.nasa.gov
mailto:linda.rosenberg@gsfc.nasa.gov
mailto:grussell@doc.gov
mailto:ryan@sei.cmu.edu
mailto:pyxisinc@erols.com
mailto:dschultz@csc.com
http://hscottcricochet.net
mailto:seablom@gsfc.nasa.gov
mailto:cseaman@umbc.edu
mailto:souha.r.shami@gsfc.nasa.gov
mailto:shaw@stsei.edu
mailto:ansilver@west.raytheon.com
mailto:donald.small@gsfc.nasa.gov
mailto:smithg@interpath.com
mailto:jasmith@hemlock.gsfc.nasa.gov
mailto:vivian.smith@faa.gov
mailto:ospauldi@hq.nasa.gov
mailto:tspences@cscmail.csc.com
mailto:squiresb@acm.org

Stapko, Ruth
Stark, Michael
S teinberg, Sandee
Steingrimsson, Borkur
Straitt, Robert
Swarm, Mark H
Swope, Janice
Sykes, Mari
Szulewski, Paul A
Tervo, Betsy
Tesoriero, Roseanne
Thomas, Bill
Tilley, Michael S
Travassos, Guilherme
Trimble, John
Tvedt, John
Valente, Jr., Eduardo
Valett, Jon
Varney, Doug
Vint, John
Vorndran, Ken
Wahlberg, Melvyn
Walker, Jocelyn
Wallace, Dolores R
Walter, Stephen 0
Wang, Alex S
Webby, Richard G
Webster, Bruce
Weller, Edward
Wells, William
Weszka, Joan
Wetzel, Paul E
Whisenand, Tom
Willey, Allan L
Williams, Chadd
Wilson, Robert K
Wong, Eric
Wortman, Kristin
Wynne, Denise
Yakimovich, Daniil
Zalesak, Steven T

SATC
NASNGSFC
Computer Sciences Corp
McMaster University
USAFR
U.S. Air Force
Computer Sciences Corp
Computer Sciences Corp
Mercury Computer Co
Computer Sciences Corp
Catholic University
The MITRE Corp
Raytheon ITSS
University of Maryland
Howard University
Catholic University
Global Science & Tech
Q-Labs, Inc.
OAO Corp
Northrop Grumman
AlliedSignal
Computer Sciences Corp
OAO Corp
NIST
Computer Sciences Corp
Raytheon ITSS
Telcordia Technologies

rstapko@pop300.gsfc.nasa.gov
mstark@cs.umd.edu
ssteinbe@cscmail.csc.com
borkur@mcserg.cas.mcmaster.ca
[No Email Address]
mark. swann@robins.af.mil
[No Email Address]
msykes@cscmail.csc.com
paulski@mc.com
etervo@cscmail.csc.com
tesoriero@cua.edu
bthomasamitre. org
mtilley@stx.com
travasso@cs.umd.edu
trimble@scs.howard.edu
tvedt@cua.edu
valente@gst.com
jon.valett@q-labs.com
dvarneyaoao. com
vintj o@mail.northg”. com
vorndrk@lskmp004. arsc. allied. com
mwahlber@cscmail.csc.com
jwalker@oao. com
dwallace@nist.gov
stevewalter@bigfoot.com
awang@farside.gsfc.nasa.gov
webby@research. telcordia. com

Ntl. Cntr. for Environmental Prediction bwebster@ncep.noaa.gov
Bull HN Information SYS weller@bull.com
Computer Sciences Corp wwells@cscmail.csc.com
Lockheed Martin j oan.weszka@lmco. com
Marconi wetzelp@hotmail.com
Goldeg-Beacom College whisent@goldeg.gbc.edu
Motorola Labs willey@motorola.com
University of Maryland chadd@cs.umd. edu
Jet Propulsion Lab robert.k.wilson@jpl.nasa.gov
Telcordia Technologies ewong@research. telcordia.com
Computer Sciences Corp wortman@lheavx. gsfc.nasa. gov
EDS denise.wynne@nastech.eds.com
University of Maryland dyak@cs.umd.edu
NASNGSFC zalesak@gondor.gsfc.nasa.gov

SEW Proceedings SEL-99-002

mailto:rstapko@pop300.gsfc.nasa.gov
mailto:mstark@cs.umd.edu
mailto:ssteinbe@cscmail.csc.com
mailto:swann@robins.af.mil
mailto:msykes@cscmail.csc.com
mailto:paulski@mc.com
mailto:etervo@cscmail.csc.com
mailto:tesoriero@cua.edu
mailto:mtilley@stx.com
mailto:travasso@cs.umd.edu
mailto:trimble@scs.howard.edu
mailto:tvedt@cua.edu
mailto:valente@gst.com
mailto:jon.valett@q-labs.com
mailto:mwahlber@cscmail.csc.com
mailto:dwallace@nist.gov
mailto:stevewalter@bigfoot.com
mailto:awang@farside.gsfc.nasa.gov
mailto:bwebster@ncep.noaa.gov
mailto:weller@bull.com
mailto:wwells@cscmail.csc.com
mailto:wetzelp@hotmail.com
mailto:whisent@goldeg.gbc.edu
mailto:willey@motorola.com
mailto:robert.k.wilson@jpl.nasa.gov
http://telcordia.com
mailto:denise.wynne@nastech.eds.com
mailto:dyak@cs.umd.edu
mailto:zalesak@gondor.gsfc.nasa.gov

Zavage, Jerry Computer Sciences Corp gzavage@csc.com
Zelkowitz, Maw University of Maryland mvz@cs.umd.eduw
Zero, Jose University CA-Berkeley zero@llnl.gov
Ziyad, Nigel NASMGSFC ziyad@kong.gsfc.nasa.gov

SEW Proceedings SEL-99-002

mailto:gzavage@csc.com
mailto:zero@llnl.gov
mailto:ziyad@kong.gsfc.nasa.gov

Appendix B - Standard Biblioclraphv of SEL Literature

The technical papers, memorandums, and documents listed in this bibliography are organized into two
groups. The first group is composed of documents issued by the Software Engineering Laboratory
(SEL) during its research and development activities. The second group includes materials that were
published elsewhere but pertain to SEL activities. The Annotated Bibliography of Software
Engineering Laboratory Literature contains an abstract for each document and is available via the SEL
Products Page at http://sel.gsfc.nasa.gov/doc-st/docs/bibannot/contents.htm.

SEL-ORIGINATED DOCUMENTS

SEL-76-00 1, Proceedings From the First Summer Software Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop, September
1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study, P. A. Scheffer and
C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December
1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User’s Guide (Revision 3), W.
J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations, K. Freburger and V. R.
Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in the
Goddard Space Flight Center (GSFC) Code 580 Software Design Environment, C. E. Goorevich, A.
L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System
Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop, November 1980

http://sel.gsfc.nasa.gov/doc-st/docs/bibannot/contents.htm

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for Software Systems, J. F.
Cook and F. E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering, V. R. Basili,
1980

SEL-8 1-01 1, Evaluating Software Development by Analysis of Change Data, D. M. Weiss, November
1981

SEL-8 1-0 12, The Rayleigh Cuwe as a Model for Effort Distribution Over the Life of Medium Scale
Software Systems, G. 0. Picasso, December 198 1

SEL-8 1-01 3, Proceedings of the Sixth Annual Software Engineering Workshop, December 198 1

SEL-8 1-014, Automated Collection of Software Engineering Data in the Software Engineering
Laboratory (SEL), A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, F. E. McGarry, et al., August 1982

SEL-8 1- 1 10, Evaluation of an Independent Verijkation and Validation (IV& V) Methodology for Flight
Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, RecommendedApproach to Software Development, L. Landis, S. Waligora, F. E.
McGarry, et al., June 1992

SEL-8 1 -305SP 1, Ada Developers ’ Supplement to the Recommended Approach, R. Kester and
L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page, D. N. Card,
and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From the Software
Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82- 102, FORTRAN Static Source Code Analyzer Program (SAP) System Description (Revision
I) , W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder, and
F. E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Software Engineering Laboratory Literature, D. Kistler, J.
Bristow, and D. Smith, November 1994

SEL-83-001, An Approach to Software Cost Estimation, F. E. McGarry, G. Page, D. N. Card, et al.,
February 1984

SEW Proceedings SEL-99-002

SEL-83-002, Measures and Metrics for Software Development, D. N. Card, F. E. McGarry, G. Page,
et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume 11, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83- 106, Monitoring Software Development Through Dynamic Variables (Revision I) ,
C. W. Doerflinger, November 1989

SEL-84-003, Investigation of SpeclJication Measures for the Software Engineering Laboratory (SEL),
W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop, November 1984

SEL-84-10 1, Manager’s Handbook for Software Development (Revision I) , L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software VeriJication Techniques, D. N. Card, R. W. Selby, Jr., F. E.
McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory Ada
Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume 111, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM and Metrics,
R. W. Selby, Jr. andV. R. Basili, May 1985

SEL-85-005, Software VeriJication and Testing, D. N. Card, E. Edwards, F. McGarry, and C. Antle,
December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-00 1, Programmer’s Handbook for Flight Dynamics Software Development, R. Wood and E.
Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August
1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial, J.
Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop, December 1986

SEW Proceedings SEL-99-002

SEL-87-00 1, Product Assurance Policies and Procedures for Flight Dynamics Software Development,
S. Perry et al., March 1987

SEL-87-002, Ada@ Style Guide (Version l.l), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite SpeclJication Model (CSM), W. W. Agresti, June
1987

SEL-87-004, Assessing the Ada@ Design Process and Its Implications: A Case Study, S. Godfrey, C .
Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-0 10, Proceedings of the Twelfth Annual Software Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker, and
Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis, K.
Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop, November 1988

SEL-88-005, Proceedings of the First NASA Ada User’s Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Studj, S. Godfrey and
C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/ Testing
Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/Goddard,
C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users ’ Symposium, November 1989

SEL-89-103, Software Management Environment (S m) Concepts and Architecture (Revision I) , R.
Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-30 1, Software Engineering Laboratory (SEL) Database Organization and User’s Guide
(Revision 3), L. Morusiewicz, February 1995

SEL-90-00 1, Database Access Manager for the Software Engineering Laboratory (DAMSEL) User ’s
Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEW Proceedings SEL-99-002

SEL-90-002, The Cleanroom Case Studj in the Software Engineering Laboratory: Project Description
and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the Software Engineering Laboratory
(SEL), L. 0. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment Summary,
T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop, November 1990

SEL-9 1-00 1, Software Engineering Laboratory (SEL) Relationships, Models, and Management Rules,
W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report, E. W. Booth
and M. E. Stark, July 1991

SEL-9 1-004, Software Engineering Laboratory (SEL) Cleanroom Process Model, S. Green, November
1991

SEL-9 1-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-9 1-006, Proceedings of the Sixteenth Annual Software Engineering Workshop, December 1991

SEL-91- 102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision I) , F.
McGarry, August 199 1

SEL-92-00 1, Software Management Environment (S m) Installation Guide, D. Kistler and K. Jeletic,
January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL) Database,
G. Heller, J. Valett, and M. Wild, March 1992

SEL-92-003, Collected Software Engineering Papers: Volume X , November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December 1992

SEL-93-00 1, Collected Software Engineering Papers: Volume XI, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et al.,
November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December 1993

SEL-94-00 1, Software Management Environment (S m) Components and Algorithms, R. Hendrick,
D. Kistler, and J. Valett, February 1994

SEL-94-003, CStyle Guide, J. Doland and J. Valett, August 1994

SEW Proceedings SEL-99-002

SEL-94-004, Collected Software Engineering Papers: Volume XII, November 1994

SEL-94-005, An Overview of the Software Engineering Laboratory, F. McGarry, G. Page, V. R.
Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December 1994

SEL-94-102, Software Measurement Guidebook (Revision I) , M. Bassman, F. McGarry, R. Pajerski,
June 1995

SEL-95-001, Impact of Ada in the Flight Dynamics Division at Goddard Space Flight Center,
S. Waligora, J. Bailey, M. Stark, March 1995

SEL-95-003, Collected Software Engineering Papers: Volume XIII, November 1995

SEL-95-004, Proceedings of the Twentieth Annual Software Engineering Workshop, December 1995

SEL-95-102, Software Process Improvement Guidebook (Revision I), K. Jeletic, R. Pajerski,

C. Brown, March 1996

SEL-96-00 1, Collected Software Engineering Papers: Volume XIV, October 1996

SEL-96-002, Proceedings of the Twenty-First Annual Software Engineering Workshop, December
1996

SEL-97-00 1, Guide To Software Engineering Laboratory Data Collection And Reporting, September
1997

SEL-97-002, Collected Software Engineering Papers: Volume XV, October 1997

SEL-97-003, Proceedings of the Twenty-Second Annual Software Engineering Workshop, December
1997

SEL-98-00 1, SEL COTS Study Phase 1 - Initial Characterization Studj Report, A. Parra, August 1998

SEL-98-002, Proceedings of the Twenty-Third Annual Software Engineering Workshop, December
1998

SEL-99-001A, ProJile of Software at the Information Systems Center, December 1999

SEL-99-002, Proceedings of the Twenty-fourth Annual Software Engineering Workshop, December
1999

SEL-00-00 1, Collected Software Engineering Papers: Volume XVI, March 2000

SEL-00-002, Collected Software Engineering Papers: Volume XVII, March 2000

SEW Proceedings SEL-99-002

Form Approved
OMB NO. 0704-0188 I REPORT DOCUMENTATION PAGE

14. SUBJECT TERMS
SEL, software engineering, SEW, object-oriented, software process improvement, SPI, CMM,
Goal-Question-Metric, GQM, experience factory, EF, IV&V, software inspections, COTS,
COTS integration, UML, space mission software, autonomous missions, future software, JINI.

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this
collection of information includino suooestions for reducino this burden to Washinoton Headouarters Services Directorate for Information Ooerations and Reoorts 1215 Jefferson

15. NUMBER OF PAGES
570

16. PRICE CODE

Davis Highway, Suite 1204, Arliniton:$A 22202-4302, a n i to the Office of ManaGment and’Budget, Paperwork Reduction Project (0704-0188), Washingto;, DC 20503

I . AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED

I November 1999 I Technical Mc
1. TITLE AND SUBTITLE

Proceedings of the Twenty-Fourth Annual Engineering Workshop

6. AUTHOR(S)

Compiled by GSFC.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center
Greenbelt, Maryland 20771

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

This work was performed under the auspices of IDIQ 5-2857-G.

2a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category: 6 1

iorandum
5. FUNDING NUMBERS

Code 581
IDIQ 5-2857-G

8. PEFORMING ORGANIZATION
REPORT NUMBER

2000-01799-0

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

CP-2000-209890

12b. DISTRIBUTION CODE

I

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC1
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL I I I

ISN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239 18
298-102

	Preface
	1 State of the art
	2 The company context
	4 Organization of the study
	5 The results and the evaluation of these
	5.1 0 1 : How (cost-)effective are inspections and testing?
	5.2 Q 1 : Are inspections performed at the recommended inspection rates?
	5.3 42: How cost-efficient are the inspection meetings?
	and following inspection meetings?

	document complexity
	document complexity
	for individual documents/modules

	6 Conclusion
	7 References
	CJ
	*+
	rcl

	Software Systems G 0 Picasso December
	SEL-8 1-01 3 Proceedings of the Sixth Annual Software Engineering Workshop December
	and F E McGarry September 1982 vols 1 and
	SEL-83- 106 Monitoring Software Development Through Dynamic Variables (Revision
	McGarry August

